Reciprocals of Thinned Exponential Series

John Engbers*, Marquette University, David Galvin, University of Notre Dame, Cliff Smyth, University of North Carolina - Greensboro

The power series (about 0) of $e^{-x}=1-x+x^{2} / 2!-x^{3} / 3!+\cdots$ has the property that the reciprocal has a power series given by $1 / e^{-x}=e^{x}=1+x+x^{2} / 2!+x^{3} / 3!+\cdots$, and this power series is non-negative (i.e. all coefficients are non-negative). If we truncate the series for e^{-x} following an odd power $-x^{2 k+1} /(2 k+1)$!, then this non-negativity property still holds for the reciprocal of the resulting Taylor polynomial. If, however, we truncate the series following an even power $x^{2 k} /(2 k)!$, the resulting series of the reciprocal has some negative coefficients. Gessel gave a combinatorial explanation for the non-negativity phenomenon.

We'll extend this from truncates to classes of "thinned" exponential series (obtained from the power series of e^{-x} by deleting some set of terms). In particular, we consider $f_{A}(x)=$ $1+\sum_{n \in A}(-1)^{n} x^{n} / n$! for certain subsets A of $\{1,2,3, \ldots\}$, and give a combinatorial proof why these subsets have a reciprocal series that is non-negative. The truncates use $A=\{1, \ldots, m\}$. One class of A we will consider are those A which, when written in terms of maximal intervals of consecutive integers, have the ends of each interval being odd: for example, $A=\{1,2,3\} \cup\{5,6,7\} \cup\{11\} \cup\{35,36,37, \ldots\}$. We'll include some open questions.

