Asymptotics of Covering Arrays of Higher Index

Ryan Dougherty*, United States Military Academy

A covering array of index λ is an $N \times k$ array (N rows, k columns), where every entry is from the set $\{1, \dots, v\}$, such that every t columns of the array contain every t-tuple of values at least λ times; t is the strength, and λ is the redundancy. Covering arrays arise in testing of large-scale complex systems; the covering array number is the minimum number of rows for which a covering array exists with k columns, entries from $\{1, \dots, v\}$, strength t, and redundancy λ . Godbole, Skipper, and Sunley proved an upper bound for the covering array number of $\log k + \lambda \log \log k$ rows when v, t are constant. We improve on their analysis by showing that the covering array number is $\log k + \lambda$, which is asymptotically optimal (again when v, t are constant). This is joint work with Mason Calbert.

Keywords: covering array, probabilistic method