Prime labelings on a $3 \times n$ grid graph

Matt A. Ollis, Emerson College
Stephen J. Curran*, University of Pittsburgh at Johnstown
A graph G is said to have a prime labeling if there exists a bijective function $\ell: V(G) \rightarrow$ $\{1,2, \ldots, \mid V(G)) \mid\}$ such that $\ell(u)$ and $\ell(v)$ are relatively prime whenever u is adjacent to v. It is conjectured that the $m \times n$ grid graph has a prime labeling for all positive integers m and n. It is known that for any prime p and any integer n such that $1 \leq n \leq p^{2}$, there exists a prime labeling on the $p \times n$ grid graph $P_{p} \times P_{n}$. Also, it is known that the ladder $P_{2} \times P_{n}$ has a prime labeling for all positive integers n. We assume that Goldbach's Even Conjecture and a strengthened variant of Lemoine's Conjecture are true in order to show that the $3 \times n$ grid graph $P_{3} \times P_{n}$ has a prime labeling for every positive integer n. As a result, $P_{3} \times P_{n}$ has a prime labeling for every positive integer $n \leq 10^{7}$.

Keywords: Prime labeling, grid graph, Goldbach's Even Conjecture, Lemoine's Conjecture

