Prime labelings on a $3 \times n$ grid graph

Matt A. Ollis, Emerson College

Stephen J. Curran^{*}, University of Pittsburgh at Johnstown

A graph G is said to have a prime labeling if there exists a bijective function $\ell : V(G) \rightarrow \{1, 2, \ldots, |V(G))|\}$ such that $\ell(u)$ and $\ell(v)$ are relatively prime whenever u is adjacent to v. It is conjectured that the $m \times n$ grid graph has a prime labeling for all positive integers m and n. It is known that for any prime p and any integer n such that $1 \leq n \leq p^2$, there exists a prime labeling on the $p \times n$ grid graph $P_p \times P_n$. Also, it is known that the ladder $P_2 \times P_n$ has a prime labeling for all positive integers n. We assume that Goldbach's Even Conjecture and a strengthened variant of Lemoine's Conjecture are true in order to show that the $3 \times n$ grid graph $P_3 \times P_n$ has a prime labeling for every positive integer n. As a result, $P_3 \times P_n$ has a prime labeling for every positive integer $n \leq 10^7$.

Keywords: Prime labeling, grid graph, Goldbach's Even Conjecture, Lemoine's Conjecture