Permutation-Invariant Parking Assortments

Douglas M. Chen^{*} (Johns Hopkins University), Pamela E. Harris (University of Wisconsin-Milwaukee), J. Carlos Martínez Mori (Cornell University), Eric J. Pabón-Cancel (University of Puerto Rico - Mayagüez Campus), Gabriel Sargent (University of Notre Dame)

We introduce *parking assortments*, a generalization of parking functions with cars of assorted lengths. In this setting, there are $n \in \mathbb{N}$ cars of lengths $\mathbf{y} = (y_1, y_2, \dots, y_n) \in \mathbb{N}^n$ entering a one-way street with $m = \sum_{i=1}^{n} y_i$ parking spots. The cars have parking preferences $\mathbf{x} =$ $(x_1, x_2, \ldots, x_n) \in [m]^n$, where $[m] \coloneqq \{1, 2, \ldots, m\}$, and enter the street in order. Each car $i \in [n]$, with length y_i and preference x_i , follows a natural extension of the classical parking rule: it begins looking for parking at its preferred spot x_i and parks in the first y_i contiguously available spots thereafter, if there are any. If all cars are able to park under the preference list \mathbf{x} , we say \mathbf{x} is a parking assortment for \mathbf{y} . Parking assortments also generalize parking sequences, introduced by Ehrenborg and Happ, since each car seeks for the first contiguously available spots it fits in past its preference. Given a parking assortment \mathbf{x} for \mathbf{y} , we say it is *permutation invariant* if all rearrangements of \mathbf{x} are also parking assortments for \mathbf{y} . While all parking functions are permutation invariant, this is not the case for parking assortments in general, motivating the need for a characterization of this property. Although obtaining a full characterization for arbitrary $n \in \mathbb{N}$ and $\mathbf{y} \in \mathbb{N}^n$ remains elusive, we do so for n = 2, 3. Given the technicality of these results, we introduce the notion of *minimally invariant* car lengths, for which the only invariant parking assortment is the all ones preference list. We provide a concise, oracle-based characterization of minimally invariant car lengths for any $n \in \mathbb{N}$. Our results around minimally invariant car lengths also hold for parking sequences.

Keywords: parking functions/sequences/assortments, permutation invariance, algebraic combinatorics