

Spectra of structured sign patterns

Minnie Catral, Xavier University, Cincinnati OH

A sign pattern (matrix) has entries in $\{+, -, 0\}$. We investigate eigenvalue properties of the sign pattern $\mathcal{C} = \begin{bmatrix} \mathcal{A} & \mathcal{B} \\ \mathcal{D} & O \end{bmatrix}$ of order $2n$, where \mathcal{A}, \mathcal{B} are prescribed $n \times n$ sign patterns, and \mathcal{D} is a positive diagonal sign pattern. Such sign patterns are associated with dynamical systems of second-order ordinary differential equations $\ddot{\mathbf{x}} = A\dot{\mathbf{x}} + B\mathbf{x}$, where A and B are real matrices of order n . The *refined inertia* of \mathcal{C} is the nonnegative 4-tuple $\text{ri}(\mathcal{C}) = (n_+, n_-, n_z, 2n_p)$ where n_+, n_- are the number of eigenvalues of \mathcal{C} with positive and negative real parts (respectively), n_z is the number of eigenvalues of \mathcal{C} equal to zero, and $2n_p$ is the number of nonzero pure imaginary eigenvalues of \mathcal{C} . The refined inertia of sign pattern \mathcal{C} , denoted $\text{ri}(\mathcal{C})$, is the set of all possible refined inertias of matrices having the sign pattern \mathcal{C} . For given sign patterns \mathcal{A} and \mathcal{B} where one of them is a negative diagonal sign pattern, results are determined concerning the potential stability and sign stability of \mathcal{C} , as well as the refined inertia of \mathcal{C} . The set of possible refined inertias of general sign patterns \mathcal{C} for various forms of \mathcal{A} are determined when \mathcal{B} is a positive diagonal pattern.

Keywords: refined inertia, sign pattern