Minimal 123-forcing matrices

Richard Brualdi, Lei Cao*, Nova Southeastern University

A permutation of $\{1,2, \ldots, n\}$ contains a 123 -pattern provided it contains an increasing subsequence of length 3 and is 123 -avoiding otherwise. Equivalently, an $n \times n$ permutation matrix contains a 123-pattern provided the 3×3 identity matrix I_{3} is a submatrix, and is 123 -avoiding otherwise. Let A be an $n \times n(0,1)$-matrix. Then A is a 123 -forcing matrix provided every permutation matrix $P \leq A$ contains a 123-pattern, that is, every $n \times n 123$ avoiding permutation matrix has a 1 where A has a 0 , and so A blocks all $n \times n$ permutation matrices that avoid the pattern 123. A 123 -avoiding blocking matrix must have at least n 0 's. The matrix A with $n 0$'s, all in a row or a column, is a 123 -forcing matrix (because it blocks all $n \times n$ permutation matrices), but there are other matrices A with exactly $n 0$'s which are 123 -forcing matrices. In the spirit of the well-known Frobenius-König theorem, we characterize the $n \times n 123$-forcing matrices with exactly $n 0$'s.
Keywords: 123-avoiding permutation matrices, 123 -forcing matrices

