Orthogonal Realizations of Random Sign Patterns

Zachary Brennan*, Christopher Cox, Bryan A. Curtis, Enrique Gomez-Leos, Kimberly P. Hadaway, Leslie Hogben, Conor Thompson, Iowa State University
A sign pattern S is a $(+,-, 0)$-matrix whose entries represent positive, negative, and zero entries of a real matrix. We are interested in sign patterns that allow orthogonality, i.e., sign patterns S for which there exists a row orthogonal real matrix whose entries have the same sign as the corresponding entries in S. This talk investigates the probability that a random sign pattern allows orthogonality. We show that if S is an $m \times n$ sign pattern and $n \geq m^{2}+C m \log m$ for some C, then with high probability S allows orthogonality.

Keywords: orthogonal matrices, sign patterns, strong properties

