

Refined inertia of fully positive patterns, hollow positive patterns, and everything in between

Adam Berliner*, St. Olaf College
Minerva Catral, Xavier University
Dale Olesky and Pauline van den Driessche, University of Victoria

The refined inertia of a $(0, +, -)$ -sign pattern matrix \mathcal{A} is the collection of 4-tuples $\text{ri}(\mathcal{A}) = \{\text{ri}(A) = (n_+, n_-, n_z, 2n_p)\}$, where A runs over all matrix realizations of \mathcal{A} , n_+ and n_- give the number of eigenvalues of A with positive and negative real part (respectively), n_z is the number of eigenvalues of A equal to zero, and $2n_p$ is the number of nonzero pure imaginary eigenvalues of A . This talk focuses on classifying the refined inertia sets of $n \times n$ non-negative patterns which are full positive, hollow positive (0 diagonal), and all those in between.

Keywords: sign pattern, refined inertia, full positive pattern, hollow positive pattern