Computing Random Matchings in Permutohedra

Sergey Bereg^{*}, Ruochen Meng, The University of Texas at Dallas

The permutohedron of order n is the convex hull of all permutations of the vector (x_1, x_2, \ldots, x_n) in \mathbb{R}^n . It is an (n-1)-dimensional polytope. The vertices and edges of the permutohedron of order n is isomorphic to the Cayley graph of the symmetric group generated by the transpositions of two consecutive elements, i. e. $G_n = Cay(S_n, T_n)$ where S_n is the symmetric group and $T_n = \{(i, i+1) | 1 \leq i \leq n-1\}$ is the set of adjacent transpositions. The problem of computing random matchings in permutohedra is intractable due to the size of graph G_n . We show that random matchings in permutohedra can be computed for small n.