Computing Random Matchings in Permutohedra

Sergey Bereg*, Ruochen Meng, The University of Texas at Dallas
The permutohedron of order n is the convex hull of all permutations of the vector $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in R^{n}. It is an $(n-1)$-dimensional polytope. The vertices and edges of the permutohedron of order n is isomorphic to the Cayley graph of the symmetric group generated by the transpositions of two consecutive elements, i. e. $G_{n}=\operatorname{Cay}\left(S_{n}, T_{n}\right)$ where S_{n} is the symmetric group and $T_{n}=\{(i, i+1) \mid 1 \leq i \leq n-1\}$ is the set of adjacent transpositions. The problem of computing random matchings in permutohedra is intractable due to the size of graph G_{n}. We show that random matchings in permutohedra can be computed for small n.

