Improved Bounds on Permutation Arrays for Chebyshev Metric

Sergey Bereg^{*}, Mohammadreza Haghpanah, Brian Malouf, I. Hal Sudborough, University of Texas at Dallas

Let σ and π be two permutations over an alphabet $\Sigma \subseteq [n] = \{1, 2, \ldots, n\}$. The Chebyshev distance between σ and π , denoted by $d(\sigma, \pi)$, is max $\{ |\sigma(i) - \pi(i)| \}$. For an array (set) A of permutations (strings), the pairwise Chebyshev distance of A, denoted by d(A), is min $\{ d(\sigma, \pi) \mid \sigma, \pi \in A, \sigma \neq \pi \}$. An array A of permutations on [n] with d(A) = d will be called an (n, d)-PA. Let P(n, d) denote the maximum cardinality of any (n, d)-PA. We prove new lower and upper bounds on P(n, d). One of the methods for finding new (n, d)-PAs is based on prefixes and suffixes of permutations. It introduces two new problems. 1) For m < n, find the largest set A of subsets of [n] of size m with $d(A) \ge d$.

2) For an alphabet $\Sigma \subseteq [n]$, find the largest set B of permutations on Σ with $d(B) \ge d$.

2) For an arphabet $\Delta \subseteq [n]$, and the targest set D of permutations on Δ with $u(D) \geq$

Keywords: permutation arrays, Chebyshev Metric, error-correcting codes