Improved Bounds on Permutation Arrays for Chebyshev Metric

Sergey Bereg*, Mohammadreza Haghpanah, Brian Malouf, I. Hal Sudborough, University of Texas at Dallas

Let σ and π be two permutations over an alphabet $\Sigma \subseteq[n]=\{1,2, \ldots, n\}$. The Chebyshev distance between σ and π, denoted by $d(\sigma, \pi)$, is $\max \{|\sigma(i)-\pi(i)|\}$. For an array (set) A of permutations (strings), the pairwise Chebyshev distance of A, denoted by $d(A)$, is $\min \{d(\sigma, \pi) \mid \sigma, \pi \in A, \sigma \neq \pi\}$. An array A of permutations on $[n]$ with $d(A)=d$ will be called an (n, d)-PA. Let $P(n, d)$ denote the maximum cardinality of any (n, d)-PA. We prove new lower and upper bounds on $P(n, d)$. One of the methods for finding new (n, d)-PAs is based on prefixes and suffixes of permutations. It introduces two new problems.

1) For $m<n$, find the largest set A of subsets of $[n]$ of size m with $d(A) \geq d$.
2) For an alphabet $\Sigma \subseteq[n]$, find the largest set B of permutations on Σ with $d(B) \geq d$.

Keywords: permutation arrays, Chebyshev Metric, error-correcting codes

