Graphs that allow two distinct eigenvalues

Wayne Barrett*, Brigham Young University, Shaun Fallat, University of Regina, Veronika Furst, Fort Lewis College, Franklin Kenter, U.S. Naval Academy, Shahla Nasserasr, Rochester Institute of Technology, Brendan Rooney, Rochester Institute of Technology, Michael Tait, Villanova University, Hein vand der Holst, Georgia State University
Let G be a connected graph on n vertices and let $\mathcal{S}(G)$ denote the set of all real symmetric $n \times n$ matrices $A=\left[a_{i j}\right]$ such that $a_{i j}=0$ if and only if $\{i, j\}$ is not an edge of G. The diagonal entries of A can take any value. The inverse eigenvalue problem of a graph asks to determine all possible spectra of matrices in $\mathcal{S}(G)$. A fundamental subproblem is to determine the minimum number of distinct eigenvalues over all matrices in $\mathcal{S}(G)$. This parameter is denoted by $q(G)$. For example $q(G)=n$ if and only if $G=P_{n}$, the path on n vertices. The graphs with $q(G)=n-1$ have also been characterized. Determining those graphs with $q(G)=2$ has been much more difficult. A recent advance has been to determine the minimum number of edges in a graph G with $q(G)=2$. The graph G must have at least $2 n-3$ edges if n is odd and at least $2 n-4$ edges if n is even. The graphs for which equality is attained are characterized.

