Combinatorially Orthogonal Graphs

Sean Bailey, Texas A\&M University Texarkana
Vectors $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T}$ and $y=\left(y_{1}, y_{2}, \cdots, y_{n}\right)^{T}$ are combinatorially orthogonal if $\left|\left\{i: x_{i} y_{i} \neq 0\right\}\right| \neq 1$. An undirected graph $G=(V, E)$ is a combinatorially orthogonal graph if there exists $f: V \rightarrow \mathbb{R}^{k}$ for some k such that for any $u, v \in V u v \notin E$ iff $f(u)$ and $f(v)$ are combinatorially orthogonal. I will discuss some of the various results for combinatorially orthogonal graphs, especially paths and cycles.

Keywords: dot product graphs, combinatorially orthogonal, graph representations, paths

