Probing Dot Product Graphs

Sean Bailey, Texas A& M University Texarkana

An undirected graph G = (V, E) is a probe C graph if its vertex set can be partitioned into two sets, N (nonprobes) and P (probes), where N is independent and there exists $E' \subset N \times N$ such that $G' = (V, E \cup E')$ is a C graph. A *dot product graph* is a graph G such that there exists a function $f : V(G) \to \mathbb{R}^k$ such that, for $x, y \in V(G), xy \in E$ if and only if $f(x)^T f(y) \ge 1$. The minimum k for which such a function exists for G is the *dot product dimension of* G, denoted $\rho(G)$.

Structural characterizations of dot product graphs for some fixed k, and determining $\rho(G)$ for G which are \mathcal{C} graphs are two problems on which I focus and to these ends we explain k dot product probe graphs. I characterize 1-dot product probe graphs and discuss how a 2-SAT function for identifying them.

Keywords: dot product graphs, probe graphs, graph representations