Probing Dot Product Graphs

Sean Bailey, Texas A\& M University Texarkana
An undirected graph $G=(V, E)$ is a probe \mathcal{C} graph if its vertex set can be partitioned into two sets, N (nonprobes) and P (probes), where N is independent and there exists $E^{\prime} \subset N \times N$ such that $G^{\prime}=\left(V, E \cup E^{\prime}\right)$ is a \mathcal{C} graph. A dot product graph is a graph G such that there exists a function $f: V(G) \rightarrow \mathbb{R}^{k}$ such that, for $x, y \in V(G), x y \in E$ if and only if $f(x)^{T} f(y) \geq 1$. The minimum k for which such a function exists for G is the dot product dimension of G, denoted $\rho(G)$.
Structural characterizations of dot product graphs for some fixed k, and determining $\rho(G)$ for G which are \mathcal{C} graphs are two problems on which I focus and to these ends we explain k dot product probe graphs. I characterize 1-dot product probe graphs and discuss how a 2-SAT function for identifying them.

Keywords: dot product graphs, probe graphs, graph representations

