Almost linear kernels for generalized covering and packing on sparse graphs

Jungho Ahn^{*} (Korea Institute for Advanced Study),

Jinha Kim (Chonnam National University & Institute for Basic Science), and

O-joung Kwon (Hanyang University & Institute for Basic Science)

Let \mathcal{F} be a family of graphs and let p, r be nonnegative integers. For a graph G and an integer k, the (p, r, \mathcal{F}) -COVERING problem asks whether there is a set $D \subseteq V(G)$ of size at most k such that if the p-th power of G has an induced subgraph isomorphic to a graph in \mathcal{F} , then it is at distance at most r from D. The (p, r, \mathcal{F}) -PACKING problem asks whether the p-th power of G has k induced subgraphs H_1, \ldots, H_k such that each H_i is isomorphic to a graph in \mathcal{F} , and for distinct $i, j \in \{1, \ldots, k\}$, the distance between $V(H_i)$ and $V(H_j)$ in Gis larger than r.

We show that for every fixed nonnegative integer r and every fixed nonempty finite family \mathcal{F} of connected graphs, (p, r, \mathcal{F}) -COVERING with $p \leq 2r + 1$ and (p, r, \mathcal{F}) -PACKING with $p \leq 2\lfloor r/2 \rfloor + 1$ admit almost linear kernels on every nowhere dense class of graphs, parameterized by the solution size k. As corollaries, we prove that DISTANCE-r VERTEX COVER, DISTANCE-r MATCHING, \mathcal{F} -FREE VERTEX DELETION, and INDUCED- \mathcal{F} -PACKING for any fixed finite family \mathcal{F} of connected graphs admit almost linear kernels on every nowhere dense class of graphs. Our results extend the results for DISTANCE-r DOMINATING SET by Drange et al. (STACS 2016) and Eickmeyer et al. (ICALP 2017) and for DISTANCE-r INDEPENDENT SET by Pilipczuk and Siebertz (EJC 2021).

Keywords: kernelization, independent set, dominating set, covering, packing