Splitting subspaces of Linear Operators over Finite Fields

Divya Aggarwal*, Samrith Ram, Indraprastha institute of Information Technology Delhi

Let V be a vector space of dimension N over the finite field \mathbb{F}_q and T be a linear operator on V. Given an integer m that divides N, an m-dimensional subspace W of V is T-splitting if $V = W \oplus TW \oplus \cdots \oplus T^{d-1}W$ where d = N/m. Let $\sigma(m, d; T)$ denote the number of m-dimensional T-splitting subspaces. Determining $\sigma(m, d; T)$ for an arbitrary operator T is an open problem. We prove that $\sigma(m, d; T)$ depends only on the similarity class type of T and give an explicit formula in the special case where T is cyclic and nilpotent. Denote by $\sigma_q(m, d; \tau)$ the number of m-dimensional splitting subspaces for a linear operator of similarity class type τ over an \mathbb{F}_q -vector space of dimension md. For fixed values of m, d and τ , we show that $\sigma_q(m, d; \tau)$ is a polynomial in q.

Keywords: splitting subspace, Krylov space, anti-invariant subspace, invariant subspace lattice, q-Vandermonde identity, finite field