Sum choice number of generalized θ -graphs

Ch. Brause^(a), A. Kemnitz^(b), M. Marangio^(b), A. Pruchnewski^(c), Margit Voigt^{*(d)}

(a) Technical University Freiberg, (b) Technical University Braunschweig,

(c) Technical University Ilmenau, (d) University of Applied Sciences Dresden

Let G = (V, E) be a simple graph and for every vertex $v \in V$ let L(v) be a set (list) of available colors. G is called L-colorable if there is a proper coloring φ of the vertices with $\varphi(v) \in L(v)$ for all $v \in V$. A function $f : V \to \mathbb{N}$ is called a *choice function* of G and G is said to be *f*-list colorable if G is L-colorable for every list assignment L with |L(v)| = f(v)for all $v \in V$. The size of a choice function is defined by $\operatorname{size}(f) = \sum_{v \in V} f(v)$ and the sum

choice number $\chi_{sc}(G)$ denotes the minimum size of a choice function of G.

Sum list colorings were introduced by Issak in 2002 and got a lot of attention since then. For $r \geq 3$ a generalized $\theta_{k_1k_2...k_r}$ -graph is a simple graph consisting of two vertices v_1 and v_2 connected by r internally vertex disjoint paths of length k_1, k_2, \ldots, k_r ($k_1 \leq k_2 \leq \cdots \leq k_r$). In 2014, Carraher et al. determined the sum-paintability of all generalized θ -graphs which is an online-version of the sum choice number and consequently an upper bound for it. In this talk we give sharp upper bounds for the sum choice number of all generalized θ -graphs with $k_1 \geq 2$.

Keywords: list coloring, θ -graph, paintability