Decycling Toeplitz Graphs, Some Subgraphs, and Generalized Petersen Graphs Peter Dragnev, Chip Vandell*, Matt Walsh, Indiana University - Purdue University Fort Wayne

Let *S* be a subset of $\{1, 2, 3, ..., n\}$, the *Toeplitz graph* T_n^S , has vertex set $V = Z_n$, and two vertices *i* and *j* are adjacent when $|i - j| \pmod{n}$ is in *S*. A special type of Toeplitz graph is the *Circulant* graph. Given a positive integer *n*, and a set *S* which is a subset of $\{1, 2, 3, ..., \lfloor \frac{n}{2} \rfloor$ } the *circulant graph* C_n^S is the graph with vertex set $V = Z_n$ and *ij* is in the

edge set if either (i - j)**mod** n or (j - i)**mod** n is in S. For $n \ge 3$ and $1 \le k \le \lfloor \frac{n-1}{2} \rfloor$, the

Generalized Petersen graph GP_{*n*, *k*} consists of an outer cycle C_n on the vertices { $v_0, v_1, ..., v_{n-1}$ } and an inner circulant graph $C_n^{\{k\}}$ on the vertices { $v_0^*, v_1^*, ..., v_{n-1}^*$ }, with corresponding pairs of vertices ($v_j^* \& v_j$) adjacent. In this talk we will look at the *decycling number* (the minimum number of vertices which must be removed to render the remaining graph acyclic) of these graphs and some of their subgraphs.

Keywords: decycling, circulant graphs, generalized Petersen graphs