
Part 2: Sample Problems for the Advanced Section of 
Qualifying Exam in Probability and Statistics

Probability

1. The Pareto distribution, with parameters α and β, has pdf

f(x) =
βαβ

xβ+1
, α < x <∞, α > 0, β > 0.

(a) Verify that f(x) is a pdf.
(b) Derive the mean and variance of this distribution.
(c) Prove that the variance does not exist if β ≤ 2.

2. Let Ui, i = 1, 2, . . . , be independent uniform(0,1) random variables, and let X
have distribution

P (X = x) =
c

x!
, x = 1, 2, 3, . . . ,

where c = 1/(e− 1). Find the distribution of Z = min{U1, . . . , UX}.

3. A point is generated at random in the plane according to the following polar
scheme. A radius R is chosen, where the distribution of R2 is χ2 with 2 degrees of
freedom. Independently, an angle θ is chosen, where θ ∼ uniform(0, 2π). Find the
joint distribution of X = R cos θ and Y = R sin θ.

4. Let X and Y be iid N(0, 1) random variables, and define Z = min(X, Y ). Prove
that Z2 ∼ χ2

1.

5. Suppose that B is a σ-field of subsets of Ω and suppose that P : B → [0, 1] is a
set function satisfying:
(a) P is finitely additive on B;
(b) 0 ≤ P (A) ≤ 1 for all A ∈ B and P (Ω) = 1;
(c) If Ai ∈ B are disjoint and ∪∞i=1Ai = Ω, then

∑∞
i=1 P (Ai) = 1.

Show that P is a probability measure on B in Ω.

6. Suppose that {Xn}∞n=1 is a sequence of i.i.d. random variables and cn is an
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increasing sequence of positive real numbers such that for all α > 1, we have

∞∑
n=1

P [Xn > α−1cn] =∞

and
∞∑
n=1

P [Xn > αcn] <∞.

Prove that

P

[
lim sup
n→∞

Xn

cn
= 1

]
= 1.

7. Suppose for n ≥ 1 that Xn ∈ L1 are random variables such that supn≥1E(Xn) <
∞. Show that if Xn ↑ X, then X ∈ L1 and E(Xn)→ E(X).

8. Let X be a random variable with distribution function F (x).
(a) Show that ∫

R
(F (x+ a)− F (x))dx = a.

(b) If F is continuous, then E[F (X)] = 1
2
.

9. (a) Suppose that Xn
P→ X and g is a continuous function. Prove that g(Xn)

P→
g(X).

(b) If Xn
P→ 0, then for any r > 0,

|Xn|r

1 + |Xn|r
P→ 0

and

E[
|Xn|r

1 + |Xn|r
]→ 0.

10. Suppose that {Xn, n ≥ 1} are independent non-negative random variables satis-
fying E(Xn) = µn, Var(Xn) = σ2

n. Define for n ≥ 1, Sn =
∑n

i=1Xi and suppose that∑∞
n=1 µn =∞ and σ2

n ≤ cµn for some c > 0 and all n. Show

Sn
E(Sn)

P→ 1.
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11. (a) If Xn → X and Yn → Y in probability, then Xn+Yn → X+Y in probability.

(b) Let {Xi} be iid, E(Xi) = µ and V ar(Xi) = σ2. Set X̄ =
∑n

i=1Xi

n
. Show that

1

n

n∑
i=1

(Xi − X̄)2 → σ2

in probability.

12. Suppose that the sequence {Xn} is fundamental in probability in the sense that
for ε positive there exists an Nε such that P [|Xn −Xm| > ε] < ε for m, n > Nε.
(a) Prove that there is a subsequence {Xnk

} and a random variable X such that
limkXnk

= X with probability 1 (i.e. almost surely).
(b) Show that f(Xn)→ f(X) in probability if f is a continuous function.

Statistics

1. Suppose that X = (X1, · · · , Xn) is a sample from the probability distribution Pθ
with density

f(x|θ) =

{
θ(1 + x)−(1+θ), if x > 0
0, otherwise

for some θ > 0.
(a) Is {f(x|θ), θ > 0} a one-parameter exponential family? (explain your answer).
(b) Find a sufficient statistic T (X) for θ > 0.

2. Suppose that X1, · · · , Xn is a sample from a population with density

p(x, θ) = θaxa−1 exp(−θxa), x > 0, θ > 0, a > 0.

(a) Find a sufficient statistic for θ with a fixed.
(b) Is the sufficient statistic in part (a) minimally sufficient? Give reasons for your
answer.

3. Let X1, · · · , Xn be a random sample from a gamma(α, β) population.
(a) Find a two-dimensional sufficient statistic for (α, β).
(b) Is the sufficient statistic in part (a) minimally sufficient? Explain your answer.
(c) Find the moment estimator of (α, β).
(d) Let α be known. Find the best unbiased estimator of β.
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4. Let X1, . . . , Xn be iid Bernoulli random variables with parameter θ (probability
of a success for each Bernoulli trial), 0 < θ < 1. Show that T (X) =

∑n
i=1Xi is

minimally sufficient.

5. Suppose that the random variables Y1, · · · , Yn satisfy

Yi = βxi + εi, i = 1, · · · , n,

where x1, · · · , xn are fixed constants, and ε1, · · · , εn are iid N(0, σ2), σ2 unknown.
(a) Find a two-dimensional sufficient statistics for (β, σ2).
(b) Find the MLE of β, and show that it is an unbiased estimator of β.
(c) Show that [

∑
(Yi/xi)]/n is also an unbiased estimator of β.

6. Let X1, · · · , Xn be iid N(θ, θ2), θ > 0. For this model both X̄ and cS are unbiased
estimators of θ, where

c =

√
n− 1Γ((n− 1)/2)√

2Γ(n/2)
.

(a) Prove that for any number a the estimator aX̄ + (1− a)(cS) is an unbiased esti-
mator of θ.
(b) Find the value of a that produces the estimator with minimum variance.
(c) Show that (X̄, S2) is a sufficient statistic for θ but it is not a complete sufficient
statistic.

7. Let X1, · · · , Xn be i.i.d. with pdf

f(x|θ) =
2x

θ
exp{−x

2

θ
}, x > 0, θ > 0.

(a) Find the Fisher information

I(θ) = Eθ

[(
∂

∂θ
log f(X|θ)

)2
]
,

where f(X|θ) is the joint pdf of X = (X1, . . . , Xn).
(b) Show that 1

n

∑n
i=1X

2
i is an UMVUE of θ.

8. Let X1, · · · , Xn be a random sample from a n(θ, σ2) population, σ2 known. Con-
sider estimating θ using squared error loss. Let π(θ) be a n(µ, τ 2) prior distribution
on θ and let δπ be the Bayes estimator of θ. Verify the following formulas for the risk
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function, Bayes estimator and Bayes risk.
(a) For any consatnts a and b, the estimator δ(X) = aX̄ + b has risk function

R(θ, δ) = a2
σ2

n
+ (b− (1− a)θ)2.

(b) Show that the Bayes estimator of θ is given by

δπ(X) = E(θ|X̄) =
τ 2

τ 2 + σ2/n
X̄ +

σ2/n

τ 2 + σ2/n
µ.

(c)Let η = σ2/(nτ 2 + σ2). The risk function for the Bayes estimator is

R(θ, δπ) = (1− η)2
σ2

n
+ η2(θ − µ)2.

(d) The Bayes risk for the Bayes estimator is

B(π, δπ) = τ 2η.

9. Suppose that X = (X1, · · · , Xn) is a sample from normal distribution N(µ, σ2)
with µ = µ0 known.
(a) Show that σ̂0

2 = n−1
∑n

i=1(Xi − µ0)
2 is a uniformly minimum variance unbiased

estimate (UMVUE) of σ2.
(b) Show that σ̂0

2 converges to σ2 in probability as n→∞.
(c) If µ0 is not known and the true distribution of Xi is N(µ, σ2), µ 6= µ0, find the
bias of σ̂0

2.

10. Let X1, · · · , Xn be i.i.d. as X = (Z, Y )T , where Y = Z +
√
λW , λ > 0, Z and

W are independent N(0, 1).
(a)Find the conditional density of Y given Z = z.
(b)Find the best predictor of Y given Z and calculate its mean squared prediction
error (MSPE).
(c)Find the maximum likelihood estimate (MLE) of λ.
(d)Find the mean and variance of the MLE.

11. Let X1, · · · , Xn be a sample from distribution with density

p(x, θ) = θxθ−11{x ∈ (0, 1)}, θ > 0.

(a) Find the most powerful (MP) test for testing H : θ = 1 versus K : θ = 2 with
α = 0.10 when n = 1.
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(b) Find the MP test for testing H : θ = 1 versus K : θ = 2 with α = 0.05 when
n ≥ 2.

12. Let X1, · · · , Xn be a random sample from a N(µ1, σ
2
1), and let Y1, · · · , Ym be an

independent random sample from a N(µ2, σ
2
2). We would like to test

H : µ1 = µ2 versus K : µ1 6= µ2

with the assumption that σ2
1 = σ2

2.
(a) Derive the likelihood ratio test (LRT) for these hypotheses. Show that the LRT
can be based on the statistic

T =
X̄ − Ȳ√
S2
p

(
1
n

+ 1
m

) ,
where

S2
p =

1

n+m− 2

(
n∑
i=1

(Xi − X̄)2 +
m∑
j=1

(Yj − Ȳ )2

)
.

(b)Show that, under H, T has a tn+m−2 distribution.
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Part 3: Required Proofs for Probability and Statistics
Qualifying Exam

In what follows Xi’s are always i.i.d. real random variables (unless otherwise speci-
fied).

You are allowed to use some well known theorems (like Lebesgue Dominant Conver-
gence Theorem or Chebyshev inequality), but you must state them and explain how
and where do you use them.

Warning: If X and Y have the same moment generating function it does not mean
that their distributions are the same.

1. Prove that

if Xn → X0 in probability, then Xn → X0 in distribution.

Offer a connterexample for the converse.

2. Prove that

if E|Xn −X0| → 0. then Xn → X0 in probability.

Offer a connterexample for the converse.

3. We define dBL(Xn, X0) = SupH∈BL|EH(Xn)− EH(X0)|, where BL is a set of all
real functions that are Lipshitz and bounded by 1. Prove that

if dBL(Xn, X0)→ 0, then P (Xn ≤ t)→ P (X0 ≤ t)

for every t for which function F (t) = P (X0 ≤ t) is continuous.

4. Prove that

if Xn → X0 in probability and Yn → Y0 in distribution,

then
Xn + Yn → X0 + Y0 in distribution.

5. Prove that if EX2
i <∞, then

1

n

n∑
i=1

Xi → E(X1) in probability.
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6. (Count as two) Prove that if E(|Xi|) exists, then

n−1
n∑
i=1

Xi → EX1 in probability.

7. Prove that if EX4
i <∞, then

n−1
n∑
i=1

Xi → EX1 a.s.

Hint: Work with: P (∩∞n=1 ∪∞k=n |n−1
∑n

i=1Xi − EX1| > ε).

8. (Count as two) Prove that if E|Xi|3 <∞, then

n−1/2
n∑
i=1

(Xi − EX1)→ Z in distribution,

where Z is a centered normal random variable with E(Z2) = V ar(Xi) = σ2.

9. Prove: For any p, q > 1 and 1
p

+ 1
q

= 1

E|XY | ≤ (E|X|p)1/p (E|X|q)1/q .

10. Prove that if

Xn → X0 in probability and |Xi| ≤M <∞,

then
E|Xn −X0| → 0.

11. (Count as two) Let Fn(t) = 1
n

∑n
i=1 1{Xi≤t} and F (t) = P (Xi ≤ t) be a continuous

function. Then
sup
t
|Fn(t)− F (t)| → 0 in probability.

12. Let X and Y be independent Poisson random variables with their parameters
equal λ. Prove that Z = X + Y is also Poisson and find its parameter.

13. Let X and Y be independent normal random variables with E(X) = µ1, E(Y ) =
µ2, V ar(X) = σ2

1, V ar(Y ) = σ2
2. Show that Z = X + Y is also normal and find E(Z)

and V ar(Z).
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14. Let Xn converge in distribution to X0 and let f : R→ R be a continuous function.
Show that f(Xn) converges in distribution to f(X0).

15. Using only the Axioms of probability and set theory, prove that
a)

A ⊂ B ⇒ P (A) ≤ P (B).

b)
P (X + Y > ε) ≤ P (X > ε/2) + P (Y > ε/2).

c) If A and B are independent events, then Ac and Bc are independent as well.
d) If A and B are mutually exclusive and P (A) + P (B) > 0, show that

P (A|A ∪B) =
P (A)

P (A) + P (B)
.

16. Let Ai be a sequence of events. Show that

P (∪∞i=1Ai) ≤
∞∑
i=1

P (Ai).

17. Let Ai be a sequence of events such that Ai ⊂ Ai+1, i = 1, 2, ... Prove that

lim
n→∞

P (An) = P (∪∞i=1Ai).

18. Formal definition of weak convergence states that Xn → X0weakly if for every
continuous and bounded function f :R→ R, Ef(Xn)→ Ef(X0). Show that:

Xn → X0 weakly ⇒ P (Xn ≤ t)→ P (X ≤ t)

for every t for which the function F (t) = P (X ≤ t) is continuous.

19. (Borel-Cantelli lemma). Let Ai be a sequence of events such that
∑∞

i=1 P (Ai) <
∞, then

P (∩∞n=1 ∪∞k=n Ak) = 0.

20. Consider the linear regression model Y = Xβ + e, where Y is an n× 1 vector of
the observations, X is the n×p design matrix of the levels of the regression variables,
β is an p× 1 vector of the regression coefficients, and e is an n× 1 vector of random
errors. Prove that the least squares estimator for β is β̂ = (X

′
X)−1X

′
Y .

21. Prove that if X follows a F distribution F (n1, n2), then X−1 follows F (n2, n1).
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22. Let X1, · · · , Xn be a random sample of size n from a normal distribution N(µ, σ2).
We would like to test the hypothesis H0 : µ = µ0 versus H1 : µ 6= µ0. When σ is
known, show that the power function of the test with type I error α under true popu-

lation mean µ = µ1 is Φ(−zα/2 + |µ1−µ0|
√
n

σ
), where Φ(.) is the cumulative distribution

function of a standard normal distribution and Φ(zα/2) = 1− α/2.

23. Let X1, · · · , Xn be a random sample of size n from a normal distribution N(µ, σ2).
Prove that (a) the sample mean X̄ and the sample variance S2 are independent; (b)
(n−1)S2

σ2 follows a Chi-squared distribution χ2(n− 1).
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Qualifying Exam on Probability and Statistics

August 24, 2017

Name:

Instruction: There are ten problems at two levels: 5 problems at elementary level and
5 proof problems at graduate level. Therefore, please make sure to budget your time to
complete problems at both levels. Show your detailed steps in order to receive credits. You
have 3 hours to complete the exam. GOOD LUCK!

Level 1: Elementary Problems

1. A blood test indicates the presence of a particular disease 95% of the time when the
disease is actually present. The same test indicates the presence of the disease 0.5%
of the time when the disease is not actually present. One percent of the population
actually has the disease.

(a). What is the probability that the test indicates the presence of the disease?

(b). Calculate the probability that a person actually has the disease given that the
test indicates the presence of the disease.
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2. Let X and Y be independent and identically distributed random variables such that
the moment generating function of X + Y is

M(t) = 0.09e−2t + 0.24e−t + 0.34 + 0.24et + 0.09e2t,−∞ < t <∞.

(a). Find P (X ≤ 0).

(b). Find µ = E(X) and σ2 = V ar(X).
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3. On May 5, in a certain city, temperatures have been found to be normally distributed
with mean µ = 24◦C and variance σ2 = 9. The record temperature on that day is
27◦C.

(a). What is the probability that the record of 27◦C will be broken on next May 5 ?

(b). What is the probability that the record of 27◦C will be broken at least 3 times
during the next 5 years on May 5 ? (Assume that the temperatures during the
next 5 years on May 5 are independent.)

(c). How high must the temperature be to place it among the top 5% of all temper-
atures recorded on May 5 ?
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4. A company offers earthquake insurance. Annual premiums are modeled by an expo-
nential random variable with mean 2. Annual claims are modeled by an exponential
random variable with mean 1. Premiums and claims are independent. Let X denote
the ratio of claims to premiums. Determine the probability density function f(x) of
X.
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5. Ten cards from a deck of playing cards are in a box: two diamonds, three spades, and
five hearts. Two cards are randomly selected without replacement. Find the condi-
tional variance of the number of diamonds selected, given that no spade is selected.

5



Level 2: Proof Problems

1. Let {Ai} be a sequence of events satisfying
∑∞

i=1 P (Ai) <∞. Show that

P (∩∞n=1 ∪∞k=n Ak) = 0.
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2. Let {Xi}ni=1 be i.i.d. and normally distributed with mean µ and variance σ2. Show
that

(a). the sample mean X̄n and sample variance S2
n are independent.

(b). (n−1)S2
n

σ2 follows a chi-squared distribution χ2
n−1.
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3. Show that the sequence of random variables X1, X2, . . . converges in probability to
a constant a if and only if the sequence also converges in distribution to a. That is
the statement

P (|Xn − a| > ε)→ 0 for every ε > 0

is equivalent to

P (Xn ≤ x)→
{

0 if x < a
1 if x > a.
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Questions 4-5: Let X1, . . . , Xn be a simple random sample of size n from a population
X, and X̄n = 1

n

∑n
i=1Xi be the sample mean and S2

n = 1
n−1

∑n
i=1(Xi− X̄n)2 be the sample

variance, respectively.

4. If E(X) = µ and 0 < V ar(X) = σ2 <∞, show that

(a). S2
n → σ2 in probability as n→∞.

(b). Sn

σ
→ 1 in probability as n→∞.
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5. Assume that X is normally distributed with both mean and standard deviation being
θ, θ > 0.

(a). Show that both X̄n and cSn are unbiased estimators of θ, where

c =

√
n− 1Γ((n− 1)/2)√

2Γ(n/2)
.

(b). Find the value of t so that the linear interpolation estimator tX̄n + (1− t)(cSn)
has minimum variance.

(c). Show that (X̄n, S
2
n) is a sufficient statistic for θ but it is not a complete sufficient

statistic.
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CHALLENGING PART

1) Let Xn and Sn be two sequences of real random variables such that Sn
converges to Z in distribution, where Z is a continuous random variable. If Xn
converges to a constant K in probability, show that the following is true

XnSn ! KZ in distribution as n!1

Hint: First show that one can assume (without loss of generality) that jXnj <
M for su¢ ciently large M:

2) Let Xn be a sequence of random variables such that EXn = � and
jCov(Xn; Xm)j � 1

1+jn�mj for all n;m 2 N:
a) Show that

n�1
nX
i=1

Xi ! � in probability as n!1

Hint: Chebishev.

b) Show that

n�1=2
nX
i=1

(Xi � �) does not converge in distribution (as n!1)

Hint: V ar(n�1=2
Pn

i=1Xi)!1.

3) Let (X;Y ) be a random vector and let H(s; t) = P (X � s; Y � t);
F (s) = P (X � s); G(t) = P (Y � t): We also assume that F and G are
continuous functions and H is not necessarily continuous. De�ne C(a; b) =
H(F�1(a); G�1(b)); for (a; b) 2 [0; 1]2:

a) Show that
H(s; t) = C(F (s); G(t))

b) Show that for every s � so and t � to the following is true

C(s; t) � C(so; to)

PROOF PART
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Prove the following:

1) Using only the Axioms of probability and set theory, prove that
a)

A � B ) P (A) � P (B)

b)

P (X + Y > ") � P (X > "=2) + P (Y > "=2)

c) If A and B are independent events than Ac and Bc are indepen-
dent as well

d) If A and B are mutually exclusive and P (A) + P (B) > 0 than
show that

P (A=A [B) = P (A)

P (A) + P (B)

2) If
Xn ! X0 in probability and jXij �M <1

then
EjXn �X0j ! 0

3) This problem count as two. If EXi exists then

n�1
nX
i=1

Xi ! EX1 in probability

2



Qualifying Exam on Probability and Statistics

Spring, January 19, 2016

Instruction: You have 3 hours to complete the exam. You are required
to show all the work for all the problems. There are three parts in the exam.
Please budget your time wisely for all three parts. There are 10 problems
in Elementary part, 3 problems in Challenging part and 3 proof problems.
The suggested passing grade for the three parts are: Elementary part 80%,
Challenging part 50% and Proofs 80%.

1 Elementary part

(1). The number of injury claims per month is modeled by a random variable
N with P (N = n) = 1

(n+1)(n+2)
for non negative integral n′s. Calculate

the probability of at least one claim during a particular month, given
that there have been at most four claims during that month.

(2). Let X be a continuous random variable with density function

f(x) =
|x|
10

for x ∈ [−1, 4] and f(x) = 0 otherwise.

Calculate E(X).

(3). A device that continuously measures and records sesmic activity is
placed in a remote region. The time to failure of this device, T , is
exponentialy distributed with mean 3 years. Since the device will not
be monitored during its first two years of service, the time to discovery
of its failure is X = max(T, 2). Calculate E(X).

(4). The time until failure, T , of a product is modeled by uniform distri-
bution on [0, 10]. An extended warranty pays a benefit of 100 if failure
occurs between t = 1.5 and t = 8. The present value, W of this benefit
is

W = 100e−0.04T for T ∈ [1.5, 8] and zero otherwise.

Calculate P (W < 79).

1



(5). On any given day, a certain machine has either no malfunctions or ex-
actly one malfunction. The probability of malfunction on any given
day is 0.4. Machine malfunctions on different days are mutually in-
dependent. Calculate the probability that the machine has its third
malfunction on the fifth day, given that the machine has not had three
malfunctions in the first three days.

(6). Two fair dice are rolled. Let X be the absolute value of the difference
between the two numbers on the dice. Calculate P (X < 3).

(7). A driver and a passenger are in a car accident. Each of them indepen-
dently has probability 0.3 of being hospitalized. When a hospilatization
occurs, the loss is uniformly distributed on [0, 1]. When two hospitaliza-
tion occur, the losses are independent. Calculate the expected number
of people in the car who are hospitalized, given that the total loss due
to hospitalization is less than 1.

(8). Let X and Y be independent and identically distributed random vari-
ables such that the moment generating function for X + Y is

M(t) = 0.09e−2t + 0.24e−t + 0.34 + 0.24et + 0.09e2t for t ∈ (−∞,∞)

Calculate P (X ≤ 0).

(9). The number of workplace injuries, N, occuring in a factory on any
given day is Poisson distributed with mean λ. The parameter λ itself
is a random variable that is determined by the level of activity in the
factory and is uniformly distributed on inteval [0, 3]. Calculate V ar(N).

(10). Let X and Y be continuous random variables with joint density func-
tion

f(x, y) =

{
24xy, for 0 < y < 1− x, x ∈ (0, 1);
0, otherwise

Calculate P (Y < X|X = 1
3
).

2 Challenging Part

(1). Let Y be a non negative random variable. Show that

EY ≤
∞∑
k=0

P (Y > k) ≤ EY + 1.
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(2). Let Xn be a sequence of random variables such that
√
n(Xn − µ) →

N(0, σ2) in distribution. For any given function g and a specific µ,
suppose that g′(µ) exists and g′(µ) 6= 0. Then prove that

√
n(g(Xn)− g(µ))→ N(0, σ2[g′(µ)]2) in distribution.

(3). Let {Xn} be a sequence of random variables with E(Xn) = 0, and
V ar(Xn) ≤ C (C is a constant), E(XiXj) ≤ ρ

(
i− j

)
for any i > j and

ρ(n)→ 0 as n→∞. Show that

1

n

n∑
i=1

Xi → 0 in probability.

3 Proofs

(1). Let {Xn} be a sequence of independent and identically distributed ran-
dom variables with E|Xn| <∞. Prove or disprove the following state-
ment

1

n

n∑
k=1

Xk → EX1 in probability as n→∞.

(2). Let Xn : Ω→ Rd and such that Xn converges weakly (in distribution)
to random vector Z. Let F : Rd → R be a continuous function and let
Yn = F (Xn). Then prove or disprove the following statement:

Yn → F (Z) weakly (in distribution) as n→∞.

(3). Consider the linear regression model Y = Xβ + e, where Y is an n× 1
vector of the observations, X is the n × p design matrix of the levels
of the regression variables, β is a p× 1 vector of regression coefficients
and e is an n× 1 vector of random errors. Show that the least square
estimator for β is β̂ = (X ′X)−1X ′Y .
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