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Motivation



HFE Cryptosystem

• F a finite prime field of size q.

• K field extension of degree n of F.

• φ : K→ Fn vector space isomorphism.

• F(X ) =
∑
αi ,jX

qi+qj ∈ K[X ]

• S , T linear transformations Fn → Fn.

Secret Key

F , S and T .

Public Key

P = T ◦ φ ◦ F ◦ φ−1 ◦ S , which is given by multivariate quadratic

polynomials f1, . . . , fn ∈ F[x1, . . . , xn].

Encryption Evaluation at these polynomials

Decryption Inverting P (F is taken as a low degree polynomial)
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Min-Rank Attack (in a nutshell)

1. A symmetric matrix (αi ,j)i ,j can be associated to F
2. This matrix has low rank due to the fact that F has low

degree

3. This rank defect is reflected in P as an instance of the

so-called Min-Rank problem

4. This instance can be solved by practical means

5. The solution yields valuable information that can be used to

recover an equivalent secret key.

• It has been proven that this vulnerability also has a negative

impact in the degree of regularity of the system.
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The attack seems to require a quadratic setting

• Otherwise no symmetric matrix could be associated to F

Countermeasure?

Take the same construction, but with

F(X ) =
∑

0≤i≤j≤k≤n−1
αi ,j ,kX

qi+qj+qk .

(low degree is still needed for decryption!)

Now the public key is given by cubic multivariate polynomials

f1, . . . , fn ∈ F[x1, . . . , xn].
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Differential attack

Consider the differential DaP(x) = P(x + a)− P(x)− P(a).

• This differential is composed of quadratic multivariate

polynomials. Let P ′ be the quadratic homogeneous part.

• We have that P ′ = T ◦ φ ◦ F ′ ◦ φ−1 ◦ S , where F ′ is the

quadratic homogeneous part of DaF(X ).

The bad news

F ′ has the same (low) degree as F , so P ′ is an instance of

quadratic HFE, with the same S and T , which is vulnerable to the

Min-Rank attack.
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Our Contributions

• We introduce a cubic version of the Min-Rank problem and

show how to solve it using natural extensions from the KS

modelling.

• We show, experimentally, that taking differentials does not

necessarily make the problem easier (as it did in cubic HFE).

• We discuss the implications of a cubic rank defect in the

direct algebraic attack.

• We show that cubic big field constructions with a low-rank

central polynomial are vulnerable to the cubic Min-Rank

attack.
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Related work

• Moody, Perlner, and Smith-Tone do a rank analysis of the
cubic ABC scheme.12

• Taking differentials reduces the rank significantly, which allows

for a quadratic Min-Rank attack.

• Their work avoids discussing the rank of cubic polynomials by

focusing on the differentials

1Dustin Moody, Ray Perlner, and Daniel Smith-Tone. “Key Recovery Attack

on the Cubic ABC Simple Matrix Multivariate Encryption Scheme”. In:

Selected Areas in Cryptography – SAC 2016. 2017.
2Dustin Moody, Ray Perlner, and Daniel Smith-Tone. “Improved Attacks for

Characteristic-2 Parameters of the Cubic ABC Simple Matrix Encryption

Scheme”. In: Post-Quantum Cryptography. 2017.
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Cubic Min-Rank Attack



Definition

Let A ∈ Fn×n×n be a three-dimensional matrix, we define the rank

of A as the minimum number of summands r required to write A as

A =
r∑

i=1

ui ⊗ vi ⊗wi ,

where ui , vi ,wi ∈ Fn. We denote this number by Rank(A).

• The matrix u⊗ v ⊗w is defined so that its entry (i , j , k) is

given by uivjwk .
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• Generalizes the concept of rank for two-dimensional matrices

• It is not trivial to determine the rank of a three-dimensional
matrix

• In fact, the problem is NP-hard, along with many other

problems related to three-dimensional rank

• It is not easy to generate three-dimensional matrices with a

desired rank

• Determining the maximum rank attainable by a n × n × n
matrix remains an open question

• It is known that this maximum lies between n2

3 and 3n2

4
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Definition (Cubic Min-Rank Problem)

Given M1, . . . ,Mκ ∈ Fn×n×n, determine whether there exist

λ1, . . . , λκ ∈ F such that the rank of
∑κ

i=1 λiMi is less or equal to

r .

• Same definition as in the two-dimensional case but with

three-dimensional matrices and using the extended concept of

rank.
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Solving the cubic Min-Rank problem

Theorem (Characterization of rank3)

The rank of a matrix A ∈ Fn×n×n is the minimal number r of rank

one matrices S1, . . . ,Sr ∈ Fn×n, such that, for all slices4 A[i , ·, ·] of
A, A[i , ·, ·] ∈ span(S1, . . . ,Sr ).

• Analog in two-dimensional case: the rank is the minimum
number of vectors required to span the row space (or the
column space).

• This is the characterization of rank used in the quadratic KS

modelling.

3Joseph M Landsberg. Tensors: geometry and applications.
4A[i , ·, ·] is the two-dimensional matrix whose entry (j , k) is given by A[i , j , k]
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Generalization of KS modelling

• Let A =
∑κ

i=1 λiMi .

• Write Si = uiv
T
i for some unknown vectors ui , vi ∈ Fn.

• We force the property A[i , ·, ·] ∈ span(S1, . . . ,Sr ):

r∑
j=1

αijujv
T
j = A[i , ·, ·], for i = 1, . . . , n.

• We get a system of cubic equations

# Variables r(2n) + rn + κ (entries of the vectors above +

linear combination coefficients + λi )

# Equations n3 (n equations of n × n matrices)
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If r � n we can do much better

• It is very likely that A[1, ·, ·], . . . ,A[r , ·, ·] are linearly

independent, so

span(S1, . . . ,Sr ) = span(A[1, ·, ·], . . . ,A[r , ·, ·]).

• We force the condition A[i , ·, ·] ∈ span(A[1, ·, ·], . . . ,A[r , ·, ·])
by

r∑
j=1

αijA[j , ·, ·] = A[i , ·, ·], for i = r + 1, . . . , n.

• We get a system of n2(n − r) quadratic equations in
(n − r)r + κ variables

• Easier system than the system obtained with the quadratic KS

modelling.
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Differentials



Differentials

What is the expected rank of the quadratic part of the differential

Daf (x) = f (x + a)− f (x)− f (a), where f ∈ F[x] is a random

homogeneous cubic polynomial of rank r?

Main problem

How to generate random polynomials of a specific rank r?
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Definition

We define the symmetric rank of S ∈ Fn×n×n as the minimum

number of summands s required to write S as

S =
s∑

i=1

tiui ⊗ ui ⊗ ui ,

where ui ∈ Fn, ti ∈ F. We denote this number by SRank(S).

• It is clear that, in general, Rank(S) ≤ SRank(S).

• SRank(S) <∞ if |F| ≥ 3.
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Proposition

Let f ∈ F[x] be a homogeneous cubic polynomial. If g is the

quadratic homogeneous part of Dfa(x), then Rank(g) ≤ SRank(f ).

Proof.

If f (x) =
∑r

i=1 tiui (x)ui (x)ui (x), then for any a ∈ Fn the

quadratic part of Dfa(x) is
∑r

i=1 3tiui (a)ui (x)ui (x).
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Kruskal Rank

KRank(u1, . . . ,um): maximum integer k such that any subset of

{u1, . . . ,um} of size k is linearly independent.

Theorem (Kruskal Theorem)

If A =
∑r

i=1 tiui ⊗ ui ⊗ ui and

2r + 2 ≤ KRank(t1u1, . . . , trur ) + 2 · KRank(u1, . . . ,ur ),

then Rank(A) = r .

• To generate matrices of rank r , pick u1, . . . ,ur ∈ Fn and

t1, . . . , tr ∈ F− {0} at random.
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r = 9, n = 20
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Algebraic Attack



The complexity of performing a direct algebraic attack (via

Groebner bases) is upper bounded by

O
(
nω

r(q−1)+5
2

)
,

where 2 ≤ ω ≤ 3 is a linear algebra constant.

• Polynomial in n if r and q are constant.

• Super-polynomial in n if r grows with n.5

5This is still an upper bound on the complexity of the attack!
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Low rank big field constructions



• Let F ∈ K[X ] be a homogeneous weight 3 polynomial given

by

F(X ) =
∑

1≤i ,j ,k≤n
αi ,j ,kX

qi−1+qj−1+qk−1

• Consider the matrix A = (αi ,j ,k)i ,j ,k ∈ Fn×n×n.

• Suppose that A has low rank r (e.g. HFE-like construction).

• Let Ai be the three-dimensional matrix representing the i-th

polynomial of the public key T ◦ φ ◦ F ◦ φ−1 ◦ S .
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• Consider the trilinear form T : Kn ×Kn ×Kn → K given by

T (β, δ,γ) =
∑

1≤i ,j ,k≤n
αi ,j ,k · (βiδjγk).

Theorem

There exist λi ∈ K such that
∑n

i=1 λiAi = A′, where A′ is the

three-dimensional matrix representing the trilinear form T ◦ (∆S).6

• We can prove that Rank(A′) ≤ Rank(A)

• We obtain an instance of the cubic Min-Rank problem

• Equivalent secret keys

6∆ ∈ Kn×n is a matrix associated to the field extension K over F
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Conclusions

• Rank weaknesses are still present in the cubic setting

• Instances of the cubic Min-Rank problem can be solved

• More efficiently than in the quadratic setting for r � n.

• Solving a cubic system for r ≥ n.

• Taking differentials does not allow, in general, to transform

the problem into a quadratic one that is easier.

• Low, fixed rank constructions cannot be secure

• The system is distinguishable from random

• Succeptible to Min-Rank attack (obtaining equivalent secret

keys)

• Makes direct algebraic attack polynomial
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Future Work

• Finding other algorithms to solve the cubic Min-Rank problem

(e.g. generalization of minors modelling)

• Solving the Min-Rank problem in the setting of characteristic

2 and 3

• Developing new encryption/signature schemes with low

enough rank to allow decryption/signing but large enough

rank to avoid the Min-Rank attack

• Using the hardness of three-dimensional rank problems as a

security assumption
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Thanks
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