

Practical Implementation of Ring-SIS/LWE based Signature and IBE

<u>Pauline Bert</u>, Pierre-Alain Fouque, Adeline Roux-Langlois, and Mohamed Sabt PQCrypto 2018, April 11

Univ Rennes, CNRS, IRISA

Identity Based Encryption

Advantages

- We no longer need certificates, PKI...
- We can add extra information to the identity.

Some Post-Quantum IBEs

- 2008 First lattice based IBE, by Gentry, Peikert, and Vaikuntanathan (ROM)
- 2010 First lattice based IBE in the standard model by Cash, Hofheinz, Kiltz, and Peikert following by work of Agrawal, Boneh, and Boyen,
- 2017 First code based IBE, by Gaborit, Hauteville, Phan and Tillich (ROM).

Identity Based Encryption

Contributions

- We propose an IBE scheme by mixing the Ring version of the IBE scheme
 à la ABB with the efficient trapdoor of Micciancio and Peikert,
- We also take a look at the underlying signature scheme,
- We implement these schemes in plain C++.

→ Both scheme have efficiency comparable to the DLP¹ IBE, and the Falcon NIST submission, with different assumptions (Ring-LWE/SIS vs NTRU).

¹Ducas, Lyubashevsky, and Prest (2014). "Efficient Identity-Based Encryption over NTRU Lattices". In: ASIACRYPT.

Outline

Hard Lattice Problems and Standard Model IBE framework

Ring Identity Based Encryption Scheme

Underlying Signature Scheme

Conclusion

Hard Lattice Problems and Standard

Model IBE framework

LWE²/SIS³ problems

Learning With Errors

- $A \leftarrow U(\mathbb{Z}_q^{n \times m}),$
- $\mathbf{s} \in \mathbb{Z}_q^n$,
- $\mathbf{e} \leftarrow D_{\mathbb{Z}^m,\alpha q}$.

The search problem is to find s. The decision problem is to distinguish $(A, s^T A + e^T)$ from

$$(\mathbf{A}, \mathbf{b}^T) \longleftrightarrow U(\mathbb{Z}_q^{n \times m} \times \mathbb{Z}_q^m).$$

Short Integer Solution

Given an uniformly random matrix $\mathbf{A} \hookleftarrow U(\mathbb{Z}_q^{n \times m})$, find a non trivial short vector $\mathbf{x} \in \mathbb{Z}^m$ such that $\|\mathbf{x}\| \le \beta$ and:

→ LWE/SIS are hard:

Regev/Ajtai gave reductions from worst-case problems on lattices to the average-case LWE/SIS problems.

²Regev (2005). "On lattices, learning with errors, random linear codes, and cryptography". In: *STOC*.

³Ajtai (1996). "Generating Hard Instances of Lattice Problems". In: STOC.

Full trapdoor for LWE and SIS

A full trapdoor for the LWE and SIS problems is a short basis T_A of the lattice

$$\Lambda_q^{\perp}(\mathbf{A}) = \{\mathbf{x} \in \mathbb{Z}^m \text{ such that } \mathbf{A}\mathbf{x} = \mathbf{0} \mod q\}.$$

- Given A, it's hard to find such basis,
- we can generate A together with T_A, thanks to algorithm TrapGen(n, m, q),
- we can use T_A to solve the SIS problem,
 - for the matrix A,
 - for a matrix of the form $(\mathbf{A} \mid \mathbf{A}') \in \mathbb{Z}_a^{n \times (m+m')}$,

i.e find a short non zero $\mathbf{x} \in \mathbb{Z}^{m+m'}$ such that $(\mathbf{A} \mid \mathbf{A}')\mathbf{x} = \mathbf{u} \mod q$.

5

Public Key Encryption of Dual-Regev⁴

In this scheme, users can share a public matrix $\mathbf{A} \leftarrow U(\mathbb{Z}_q^{n \times m})$.

→ IND-CPA secure based on the hardness of LWE.

⁴Gentry, Peikert, and Vaikuntanathan (2008). "Trapdoors for hard lattices and new cryptographic constructions". In: *STOC*.

Standard Model Framework⁵

⁵Cash et al. (2010). "Bonsai Trees, or How to Delegate a Lattice Basis". In: *EUROCRYPT*; Agrawal, Boneh, and Boyen (2010). "Efficient Lattice (H)IBE in the Standard Model". In: *EUROCRYPT*.

Ring Identity Based Encryption Scheme

From random lattice to ideal lattice

Consider the rings $R = \mathbb{Z}[x]/(x^n + 1)$ or $R_q = R/qR$, with n a power of 2.

If we have s, $a \in R_q$, $s = s_0 + s_1 x + \cdots + s_{n-1} x^{n-1}$,

$$s \cdot a = \begin{pmatrix} s_0 & s_1 & \cdots & s_{n-1} \end{pmatrix} \begin{pmatrix} a_0 & a_1 & \cdots & a_{n-1} \\ -a_{n-1} & a_0 & \cdots & a_{n-2} \\ & & \ddots & \\ -a_1 & -a_2 & \cdots & a_0 \end{pmatrix}$$

--- Smaller storage, faster operations.

LWE: Given $(\mathbf{A}, \mathbf{s}^T \mathbf{A} + \mathbf{e}^T \mod q)$, find $\mathbf{s} \in \mathbb{Z}_a^n$.

SIS: Given **A**, find a short vector $\mathbf{x} \in \mathbb{Z}^m$ such that $\mathbf{A}\mathbf{x} = \mathbf{u} \mod q$.

Ring-LWE: Given
$$\mathbf{a} \in R_q^{m/n}$$
 and $(s \cdot a_1 + e_1, \cdots, s \cdot a_{m/n} + e_{m/n})$, find $s \in R_q$.
Ring-SIS: Given $\mathbf{a} \in R_q^{m/n}$, find

 $\mathbf{x} \in R^{m/n}$ such that $\mathbf{a}^T \mathbf{x} = u \mod q$.

8

Ring Gadget Trapdoor of [MP12]

The trapdoor construction consists in an almost uniformly random vector of polynomials $\mathbf{a}=(a_1,\cdots,a_m)\in R_q^m$,

$$\mathbf{a} = \left(\mathbf{a'}^{\mathsf{T}} \mid h\mathbf{g} - \mathbf{a'}^{\mathsf{T}}\mathbf{T}\right)^{\mathsf{T}}.$$

where:

- $\mathbf{a}' \leftarrow U(R_q^{m-k}),$
- $\mathbf{g} = (1, 2, 4, \dots, 2^{k-1}) \in R_q^k$ with $k = \lceil \log_2 q \rceil$ is the 'gadget vector',
- $h \in R_q$ is an invertible polynomial, called the tag,
- $T \leftarrow D_{R^{(m-k) \times k}, \sigma}$ is the trapdoor composed of Gaussian polynomials.

FRD map [ABB10]

A function $H: \{0,1\}^n \to R_q$ is an encoding with Full-Rank Differences if:

- for all id, H(id) is invertible,
- for all $id \neq id'$, $H(id) H(id') \in R_q$ is invertible.

a

Contribution: Ring IBE construction

Implementation Choices

- Plain C++ implementation using the NFLlib library⁶,
- Preimage sampling à la MP12, recently improved by Micciancio and Genise⁷,
- By setting m k = 2, and $\mathbf{a}' = (1, \mathbf{a})$ we get

$$\mathbf{a} = (1, a \mid h \cdot g_1 - (a \cdot t_{2,1} + t_{1,1}), \cdots, h \cdot g_k - (a \cdot t_{2,k} + t_{1,k}))$$

 \longrightarrow Hardness of Ring-LWE with Gaussian secret of parameter σ ,

⁶Aguilar Melchor et al. (2016). "NFLlib: NTT-Based Fast Lattice Library". In: CT-RSA.

⁷Genise and Micciancio (2018). "Faster Gaussian Sampling for Trapdoor Lattices with Arbitrary Modulus". In: *EUROCRYT*.

Parameter Choices

We need to ensure:

- the hardness of two Ring-LWE instances, of parameter q, n and:
 - Gaussian parameter σ , corresponding to the public key,
 - ullet Gaussian parameter au, corresponding to the encryption part,
- the correctness of the scheme:

$$\|e' - (e_0^T | e_1^T)^T x\| < q/4$$
,

- Estimation of the hardness of these LWE instances using the LWE estimator of Albrecht et al.⁸.
- \longrightarrow Example, for $\lambda=80$, we get $\log_2 q=51$, n=1024, and $\sigma,\tau\approx5$.

 $^{^{8}}$ Albrecht, Player, and Scott (2015). "On the concrete hardness of Learning with Errors". In: $J.\ Mathematical\ Cryptology.$

Experimental Results (IBE)

Scheme	(λ, n)	Setup (ms)	Extract (ms)	Encrypt (KB/s)	Decrypt (KB/s)
BF-128 ⁹	(128, -)	_	0.55	4.10	6.19
DLP-14 ¹⁰	(80, 512)	4034	3.8	587	1405
This paper ¹¹	(80, 1024)	1.67	4.02	230	1042

⁹Fouotsa (2013). "Calcul des couplages et arithmétique des courbes elliptiques pour la cryptographie". PhD thesis.

¹⁰McCarthy, Smyth, and O'Sullivan (2017). "A Practical Implementation of Identity-Based Encryption Over NTRU Lattices". In: IMACC.

¹¹Timings obtained on a Intel i7-5600 2.6 GHz CPU.

Underlying Signature

$\operatorname{KeyGen}(1^{\lambda}) o (\mathit{vk}, \mathit{sk})$

- 1. Choose random $\mathbf{a}' \longleftrightarrow U(R_q^{m-k})$,
- 2. Sample $\mathbf{T} \leftarrow D_{R^{(m-k)\times k},\sigma}$,
- 3. Compute $\mathbf{a} = (\mathbf{a'}^T \mid -\mathbf{a'}^T \mathbf{T})^T$,
- **4.** Output $mpk = \mathbf{a} \in R_a^m$ and $msk = \mathbf{T} \in R^{(m-k)\times k}$.

We can compute \mathbf{a}_M as $\mathbf{a}_M = \mathbf{a}^T + (\mathbf{0} \mid H(M)\mathbf{g})^T = (\mathbf{a'}^T \mid H(M)\mathbf{g} - \mathbf{a'}^T \mathbf{T})^T$.

$\operatorname{Sign}(vk = \mathbf{a}, sk = \mathbf{T}, M) \rightarrow \nu$

- 1. Sample $\mathbf{x} \leftarrow \text{Extract}((\mathbf{a}, 0), \mathbf{T}, M)$, satisfying $\mathbf{a}_M^T \mathbf{x} = 0 \in R_q$,
- 2. Output $\nu = \mathbf{x} \in R_q^m$.

$Verify(vk = a, \nu = x, M) \rightarrow \{accept, reject\}$

1. Accept iff $\mathbf{a}_{M}^{T}\mathbf{x} = 0 \mod q$ and $\|\mathbf{x}\| \leq t\zeta\sqrt{mn}$.

Experimental Results (Signature)

Timings obtained on a Intel i7-5600 2.6 GHz CPU.

Scheme	(λ, n)	KeyGen (ms)	Sign (op/s)	Verify (op/s)
Falcon ¹²	(195, 768)	53.48	202	2685
This paper	(170, 1024)	0.96	540	21276

 \longrightarrow run on the same computer but not fair comparison: not as pessimistic with the choice parameters, naive implementation of the function H...

 $^{^{12}\}mbox{Fouque}$ et al. (2018). Falcon: Fast-Fourier Lattice-based Compact Signatures over NTRU. . NIST Submission.

Get the source code of this work from

https://github.com/lbibe/code

Get the source code of this work from

Future works:

- 1. Both IBE/Signature schemes achieve selective security
- → adaptive secure variants
 - 2. IND-CCA1 variant of the IBE scheme
 - 3. Module variants
- → more versatile choice of parameters

Get the source code of this work from

https://github.com/lbibe/code

Future works:

- 1. Both IBE/Signature schemes achieve selective security
- → adaptive secure variants
 - 2. IND-CCA1 variant of the IBE scheme
 - 3. Module variants
- --> more versatile choice of parameters

Thank You!