

Ruben Niederhagen¹, Kai-Chun Ning², Bo-Yin Yang³

1. Fraunhofer SIT 2. Technische Universiteit Eindhoven

3. Academia Sinica

9 April, 2018

▶ Applications: post-quantum cryptography

- ▶ Applications: post-quantum cryptography
 - Encryption: HFE, ZHFE, Square

- ▶ Applications: post-quantum cryptography
 - Encryption: HFE, ZHFE, Square
 - Signature: SOFIA, SFLASH, UOV, QUARTZ, Rainbow

▶ Applications: post-quantum cryptography

- Encryption: HFE, ZHFE, Square
- Signature: SOFIA, SFLASH, UOV, QUARTZ, Rainbow
- Stream cipher: QUAD

- ▶ Applications: post-quantum cryptography
 - Encryption: HFE, ZHFE, Square
 - Signature: SOFIA, SFLASH, UOV, QUARTZ, Rainbow
 - Stream cipher: QUAD
- ▶ Cryptanalysis on MQ cryptographic schemes

- ▶ Applications: post-quantum cryptography
 - Encryption: HFE, ZHFE, Square
 - Signature: SOFIA, SFLASH, UOV, QUARTZ, Rainbow
 - Stream cipher: QUAD
- ▶ Cryptanalysis on MQ cryptographic schemes
 - Solve MQ systems that are not completely random

- ▶ Applications: post-quantum cryptography
 - Encryption: HFE, ZHFE, Square
 - Signature: SOFIA, SFLASH, UOV, QUARTZ, Rainbow
 - Stream cipher: QUAD
- ▶ Cryptanalysis on MQ cryptographic schemes
 - Solve MQ systems that are not completely random
 - Scheme-specific

Generic attack on MQ over \mathbb{F}_2

▶ Schemes built on MQ over \mathbb{F}_2 : UOV, MQ-hash, MQ-PKI

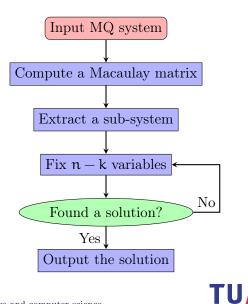
Generic attack on MQ over \mathbb{F}_2

- \blacktriangleright Schemes built on MQ over $\mathbb{F}_2 {:}$ UOV, MQ-hash, MQ-PKI
- \blacktriangleright Substitute variables and introducing equations: MP \rightarrow MQ

Generic attack on MQ over \mathbb{F}_2

- \blacktriangleright Schemes built on MQ over $\mathbb{F}_2\colon$ UOV, MQ-hash, MQ-PKI
- \blacktriangleright Substitute variables and introducing equations: MP \rightarrow MQ
- ▶ With Weil descent: MQ over $\mathbb{F}_{2^n} \to MQ$ over \mathbb{F}_2

The Original Crossbred Algorithm



 $/\operatorname{department}$ of mathematics and computer science

4/28

he Universiteit

5/28

• A Macaulay matrix: a system of polynomials extended from a base system \mathcal{F} of \mathfrak{m} polynomials of degree d in n variables.

5/28

- A Macaulay matrix: a system of polynomials extended from a base system $\mathcal F$ of $\mathfrak m$ polynomials of degree d in $\mathfrak n$ variables.
- The Macaulay degree D: the maximal degree of the polynomials in the extended system.

- A Macaulay matrix: a system of polynomials extended from a base system $\mathcal F$ of $\mathfrak m$ polynomials of degree d in $\mathfrak n$ variables.
- The Macaulay degree D: the maximal degree of the polynomials in the extended system.
- Each row in a Macaulay matrix is the product of a polynomial f in \mathfrak{F} by a monomial t such that $\deg(t \cdot f) \leq D$.

- A Macaulay matrix: a system of polynomials extended from a base system $\mathcal F$ of $\mathfrak m$ polynomials of degree d in $\mathfrak n$ variables.
- The Macaulay degree D: the maximal degree of the polynomials in the extended system.
- Each row in a Macaulay matrix is the product of a polynomial f in \mathcal{F} by a monomial t such that $\deg(t \cdot f) \leq D$.

Example

$$\mathfrak{F} = \begin{cases} f_1 = x_1 x_2 + x_2 x_3 + x_3 \\ f_2 = x_1 x_4 + 1 \end{cases}$$

TU/e Technische Universiteit Eindhoven University of Technology

Crossbred - Macaulay Matrix

 Row order: graded reverse lexicographical order w.r.t to the multipliers

Crossbred - Macaulay Matrix

- Row order: graded reverse lexicographical order w.r.t to the multipliers
- ▶ Column order: graded reverse lexicographical order

Crossbred - Macaulay Matrix

- Row order: graded reverse lexicographical order w.r.t to the multipliers
- ▶ Column order: graded reverse lexicographical order

Crossbred - Extracted Sub-system

• Consists of only monomials that become linear in $x_1, \ldots x_k$ after fixing x_{k+1}, \ldots, x_n .

Crossbred - Extracted Sub-system

• Consists of only monomials that become linear in $x_1, \ldots x_k$ after fixing x_{k+1}, \ldots, x_n .

7/28

ne Universiteit

TU

• Example: Fixing $(x_3, x_4) = (0, 0)$ in

$$S = \begin{cases} x_1 x_4 + x_2 x_3 + x_1 + x_3 + x_4 = 0\\ x_1 x_3 + x_3 x_4 + x_2 + 1 = 0\\ x_2 x_3 + x_2 x_4 + x_3 x_4 + x_1 + x_4 = 0 \end{cases}$$

yields

$$S' = \begin{cases} x_1 = 0\\ x_2 + 1 = 0\\ x_1 = 0 \end{cases}$$

► Basic idea: $x_1x_2 + x_1x_3 + x_2x_3 + x_3 + 1 = (x_1x_2 + 1) + x_3(x_1 + x_2 + 1)$

8/28

- ▶ Basic idea:
 - $x_1x_2 + x_1x_3 + x_2x_3 + x_3 + 1 = (x_1x_2 + 1) + x_3(x_1 + x_2 + 1)$
- ▶ Apply this technique recursively to fix n k variables

▶ How to extract a sub-system?

- ▶ How to extract a sub-system?
- ▶ How to check the solvability of a linear system?

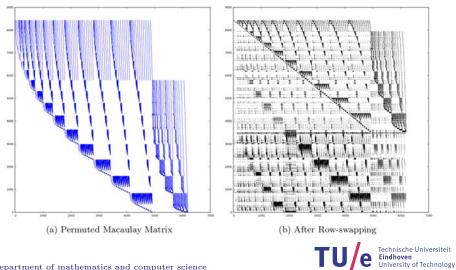
1000 (a) Original Macaulay Matrix (b) After Gaussian Elimination

Gaussian elimination?

/ department of mathematics and computer science

TU

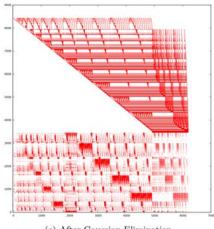
10/28



11/28

Permute columns and swap rows

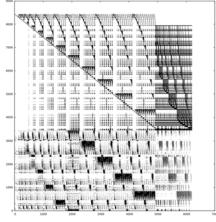
Ignore the lower part



(c) After Gaussian Elimination

TU/e Technische Universiteit Eindhoven University of Technology

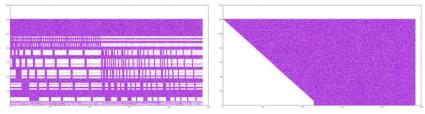
Reduce dimension



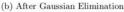
(d) After Eliminating Pivot Monomials

TU/e Technische Universiteit Eindhoven University of Technology

Reduced Macaulay matrix

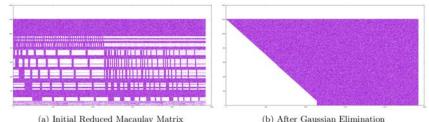


(a) Initial Reduced Macaulay Matrix



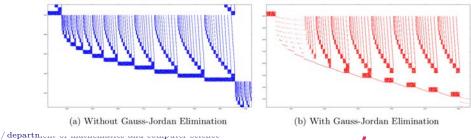
14/28

Reduced Macaulay matrix



(b) After Gaussian Elimination

▶ A rule of thumb: Gauss-Jordan elimination



• Observation:

$$f(\vec{a}) = f(\vec{a'}) + \frac{\partial f}{\partial x_i}(\vec{a'}).$$

when \vec{a} and $\vec{a'}$ differs only by one coordinate.

15/28

• Observation:

$$f(\vec{a}) = f(\vec{a'}) + \frac{\partial f}{\partial x_i}(\vec{a'}).$$

when \vec{a} and $\vec{a'}$ differs only by one coordinate.

For sub-system S of m degree-D equations in n variables, fix n − k variables in S takes O(D ⋅ k) instructions.

15/28

Example

$$f(x_4, x_5, x_6, x_7) = x_1 x_4 x_5 x_6 + x_1 x_4 x_5 x_7 + x_4 x_5 x_6 x_7 + x_1 x_4 x_5 + x_2 x_4 x_6 + x_4 x_6 x_7 + x_1 x_4 + x_1 x_5 + x_5 x_7 + x_6 x_7 + x_1 + x_2 + x_4 + 1$$

16/28

$$\frac{\partial f}{\partial x_4} = x_1 x_5 x_6 + x_1 x_5 x_7 + x_5 x_6 x_7 + x_1 x_5 + x_2 x_6 + x_6 x_7 + x_1 + 1$$

$$\frac{\partial^2 f}{\partial x_4 \partial x_7} = x_1 x_5 + x_5 x_6 + x_6$$

$$\frac{\partial^3 f}{\partial x_4 \partial x_6 \partial x_7} = x_5 + 1$$

Technische Universiteit

TU

e

rsity of Technology

$$\begin{split} f(0,0,0,0) &= f(1,0,0,0) + \frac{\partial f}{\partial x_4} (1,0,0,0) \\ &= f(1,0,0,0) + \frac{\partial f}{\partial x_4} (1,0,0,1) + \frac{\partial^2 f}{\partial x_4 \partial x_7} (1,0,0,1) \\ &= f(1,0,0,0) + \frac{\partial f}{\partial x_4} (1,0,0,1) + \frac{\partial^2 f}{\partial x_4 \partial x_7} (1,0,1,1) + \frac{\partial^3 f}{\partial x_4 \partial x_6 \partial x_7} (1,0,1,1) \\ &= f(1,0,0,0) + \frac{\partial f}{\partial x_4} (1,0,0,1) + \frac{\partial^2 f}{\partial x_4 \partial x_7} (1,0,1,1) + \frac{\partial^3 f}{\partial x_4 \partial x_6 \partial x_7} (1,0,1,0) + \frac{\partial^4 f}{\partial x_4 \partial x_6 \partial x_7 \partial x_7} \\ &= f(1,0,0,0) + \frac{\partial f}{\partial x_4} (1,0,0,1) + \frac{\partial^2 f}{\partial x_4 \partial x_7} (1,0,1,1) + \frac{\partial^3 f}{\partial x_4 \partial x_6 \partial x_7} (1,0,1,0) + 0 \\ &= f(1,0,0,0) + \frac{\partial f}{\partial x_4} (1,0,0,1) + \frac{\partial^2 f}{\partial x_4 \partial x_7} (1,0,1,1) + 1 \\ &= f(1,0,0,0) + \frac{\partial f}{\partial x_4} (1,0,0,1) + 1 + 1 \\ &= f(1,0,0,0) + x_1 + 1 + 1 + 1 \\ &= x_2 + x_1 + 1 + 1 + 1 \\ &= x_1 + x_2 + 1 \end{split}$$

TU

Technische Universiteit Eindhoven University of Technology

17/28

because $1010 \rightarrow 1011 \rightarrow 1001 \rightarrow 1000 \rightarrow 0000$

Adaption - Testing a Linear System

Gauss-Jordan elimination?

x_1	x_2	x_3	x_4	1															
$eq_1 (1$	1	1	1	1)	- 8t	eq_1	(1	1	1	1	1)		eq_1	(1)	1	1	1	1	
$eq_2 = 0$	0	0	1	0		eq_2	0	0	0	1	0		eq_2	0	0	0	1	0	
$S = eq_3$ 1	1 0 0 1 1	1	$\xrightarrow{1^{st} \text{ pivot element}}_{no swapping}$	eq_3	1	0	0	1	1	$\xrightarrow{\text{reduce with}}_{eq_3, eq_4}$	eq_3	0	1	1	0	0			
eq_4 1	0	1	1	0		eq_4	1	0	1	1	0	- 437 - 44	eq_4	0	1	0	0	1	
$eq_5 \setminus 0$	1	0	1	$_1)$		eq_5	10	1	0	1	$_{1})$		eq_5	$\langle 0 \rangle$	1	0	1	1/	
						eq_1	(1	1	1	1	1	reduce with	eq_1	(1	0	0	1	1 \	
						eq_3	0	1	1	0	0		eq_3	0	1	1	0	0	
					$\xrightarrow{2^{nd} \text{ pivot element}}$	eq_2	0	0	0	1	0		eq_2	0	0	0	1	0	
		8	swap eq2 and eq3	eq_4	0	1	0	0	1	eq_1, eq_4, eq_5	eq_4	0	0	1	0	1			
						eq_5	10	1	0	1	1)		eq_5	10	0	1	1	1)	
						10							1.						
						eq_1	(1	0	0	1	1)		eq_1	/1	0	0	1	1)	
						eq_3		1	1	0		reduce with	eq_3		1	0	0	1	
					3^{rd} pivot element	eq_4	0	0	1	0	1		eq_4		0	1	0	1	
				swap eq_2 and eq_4	eq_2	0	0	0		0	eq_3, eq_5	eq_2	0	0	0	1	0		
						eq_5		0	1	1	1		eq_5		0	0	1	0	
						042		0	1	1	17		642		0	0	1	07	
							1.	0			• `			1.	0	0	0	. \	
					$\xrightarrow[]{\text{ th pivot element}}_{\text{ no swapping}}$	eq_1		0		1	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	$\xrightarrow[eq_1, eq_5]{\text{reduce with}}$	eq_1		0	0	0	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	
						eq_3	0	1	0	0	1		eq_3	0	1	0		1	
						eq_4	0	0	1	0	1		eq_4	0	0	1	0	1	
				eq_2	0	0	0	1	0		eq_2	0	0	0	1	0	eit		
						eq_5	10	0	0	1	0/		eq_5	\0	0	0	0	0/	
epartment of	t mat	hem	atic	s an	d computer scie	nce						-	—	-	01	1461	этсу	ULIEU	iiiioi0gy

/ department of mathematics and computer science

Adaption - Testing a Linear System

A better variant:

- $O(k^2)$ instructions for testing
- O(k) instructions for extracting a solution

mask

/ department of mathematics and computer science

TU/e Technische Universiteit Eindhoven University of Technology Split search space into N smaller sub-spaces and launch N threads?

20/28

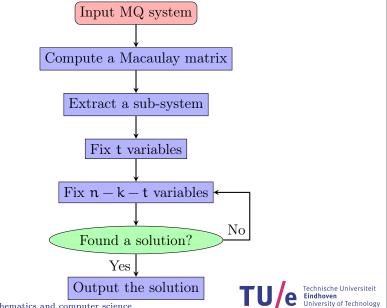
- \blacktriangleright Split search space into N smaller sub-spaces and launch N threads?
 - Different starting points \rightarrow not ideal for GPU because divergent paths

- \blacktriangleright Split search space into N smaller sub-spaces and launch N threads?
 - Different starting points \rightarrow not ideal for GPU because divergent paths
- \blacktriangleright Fix t variables in the sub-system to create 2^t smaller sub-systems

- Split search space into N smaller sub-spaces and launch N threads?
 - Different starting points \rightarrow not ideal for GPU because divergent paths
- \blacktriangleright Fix t variables in the sub-system to create 2^t smaller sub-systems
 - Same enumeration starting point

- Split search space into N smaller sub-spaces and launch N threads?
 - Different starting points \rightarrow not ideal for GPU because divergent paths
- Fix t variables in the sub-system to create 2^t smaller sub-systems
 - Same enumeration starting point
 - Same last order partial derivatives

The Adapted Crossbred Algorithm



21/28

▶ From scratch

- ▶ From scratch
- ▶ Pure C

- ▶ From scratch
- ▶ Pure C
- ▶ Generate C code with Python script

- ▶ From scratch
- ▶ Pure C
- ▶ Generate C code with Python script
- ▶ Part on CPU, part on GPU \rightarrow pipeline

Environment

The Saber cluster:

https://blog.cr.yp.to/20140602-saber.html

- ▶ GTX 780 / GTX 980
- ▶ AMD FX-8350 @4GHz

Technische Universiteit Eindhoven University of Technology

/ department of mathematics and computer science

Test Benches

/ department of mathematics and computer science

Technische Universiteit Eindhoven University of Technology

▶ Crossbred: 6200 CPU-hours (Xeon 2690)

For n = 74:

- ▶ Crossbred: 6200 CPU-hours (Xeon 2690)
- ▶ Parallel Crossbred: 98.39 GPU-hours (GTX 980)

For n = 74:

- ▶ Crossbred: 6200 CPU-hours (Xeon 2690)
- ▶ Parallel Crossbred: 98.39 GPU-hours (GTX 980)

For n = 74:

▶ Crossbred: 360,000 CPU-hours

- ▶ Crossbred: 6200 CPU-hours (Xeon 2690)
- ▶ Parallel Crossbred: 98.39 GPU-hours (GTX 980)

For n = 74:

- ▶ Crossbred: 360,000 CPU-hours
- ▶ Parallel Crossbred: 8236.05 GPU-hours

 "Public Key Identification Schemes based on Multivariate Quadratic Polynomials", Koichi Sakumoto, Taizo Shirai, Harunaga Hiwatari, CRYPTO 2011

26/28

- "Public Key Identification Schemes based on Multivariate Quadratic Polynomials", Koichi Sakumoto, Taizo Shirai, Harunaga Hiwatari, CRYPTO 2011
- MQ system where n = 84, m = 80

- "Public Key Identification Schemes based on Multivariate Quadratic Polynomials", Koichi Sakumoto, Taizo Shirai, Harunaga Hiwatari, CRYPTO 2011
- MQ system where n = 84, m = 80
- ▶ GPU: Nvidia GTX 980

- "Public Key Identification Schemes based on Multivariate Quadratic Polynomials", Koichi Sakumoto, Taizo Shirai, Harunaga Hiwatari, CRYPTO 2011
- MQ system where n = 84, m = 80
- ▶ GPU: Nvidia GTX 980
- \blacktriangleright At most 37000, on average: 3600 (GPU-years)

- "Public Key Identification Schemes based on Multivariate Quadratic Polynomials", Koichi Sakumoto, Taizo Shirai, Harunaga Hiwatari, CRYPTO 2011
- MQ system where n = 84, m = 80
- ▶ GPU: Nvidia GTX 980
- ▶ At most 37000, on average: 3600 (GPU-years)
- ▶ Claimed to have 80 bits of security, in fact only 76.5 bits

▶ Parallel Crossbred outperforms the orginal Crossbred algorithm by a factor as high as ≈ 60 .

27/2

- ▶ Parallel Crossbred outperforms the orginal Crossbred algorithm by a factor as high as ≈ 60 .
- \blacktriangleright We solved all the Fukuoka MQ type I challenges, n=55 to 74.

27

- ▶ Parallel Crossbred outperforms the orginal Crossbred algorithm by a factor as high as ≈ 60 .
- We solved all the Fukuoka MQ type I challenges, n = 55 to 74.
- We showed that a post-quantum cryptographic scheme whose security relies on an MQ system where n = 84 and m = 80 can be broken with 37000 GPUs in at most one year, and on average 35 days.

- ▶ Parallel Crossbred outperforms the orginal Crossbred algorithm by a factor as high as ≈ 60 .
- We solved all the Fukuoka MQ type I challenges, n = 55 to 74.
- We showed that a post-quantum cryptographic scheme whose security relies on an MQ system where n = 84 and m = 80 can be broken with 37000 GPUs in at most one year, and on average 35 days.
- ▶ We showed that an MQ system with only 80 bits of security should not be considered secure anymore.

Thank you for attention!

