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MP and MQ Systems

I Applications: post-quantum cryptography

• Encryption: HFE, ZHFE, Square
• Signature: SOFIA, SFLASH, UOV, QUARTZ, Rainbow
• Stream cipher: QUAD

I Cryptanalysis on MQ cryptographic schemes

• Solve MQ systems that are not completely random
• Scheme-specific
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Goal

Generic attack on MQ over F2

I Schemes built on MQ over F2: UOV, MQ-hash, MQ-PKI

I Substitute variables and introducing equations: MP → MQ
I With Weil descent: MQ over F2n → MQ over F2
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The Original Crossbred Algorithm

Input MQ system

Compute a Macaulay matrix

Extract a sub-system

Fix n− k variables

Found a solution?

Output the solution

No

Yes
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Crossbred - Macaulay Matrix

I Definition

• A Macaulay matrix: a system of polynomials extended from a
base system F of m polynomials of degree d in n variables.

• The Macaulay degree D: the maximal degree of the polynomials
in the extended system.

• Each row in a Macaulay matrix is the product of a polynomial f in
F by a monomial t such that deg(t · f) 6 D.

I Example

F =

{
f1 = x1x2 + x2x3 + x3

f2 = x1x4 + 1
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Crossbred - Macaulay Matrix

I Row order: graded reverse lexicographical order w.r.t to the
multipliers

I Column order: graded reverse lexicographical order

I
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Crossbred - Extracted Sub-system

I Consists of only monomials that become linear in x1, . . . xk after
fixing xk+1, . . . , xn.

I Example: Fixing (x3, x4) = (0, 0) in

S =


x1x4 + x2x3 + x1 + x3 + x4 = 0

x1x3 + x3x4 + x2 + 1 = 0

x2x3 + x2x4 + x3x4 + x1 + x4 = 0

yields

S′ =


x1 = 0

x2 + 1 = 0

x1 = 0



7/28

/ department of mathematics and computer science

Crossbred - Extracted Sub-system

I Consists of only monomials that become linear in x1, . . . xk after
fixing xk+1, . . . , xn.

I Example: Fixing (x3, x4) = (0, 0) in

S =


x1x4 + x2x3 + x1 + x3 + x4 = 0

x1x3 + x3x4 + x2 + 1 = 0

x2x3 + x2x4 + x3x4 + x1 + x4 = 0

yields

S′ =


x1 = 0

x2 + 1 = 0

x1 = 0



8/28

/ department of mathematics and computer science

Crossbred - Fast Evaluate

I Basic idea:
x1x2 + x1x3 + x2x3 + x3 + 1 = (x1x2 + 1) + x3(x1 + x2 + 1)

I Apply this technique recursively to fix n− k variables



8/28

/ department of mathematics and computer science

Crossbred - Fast Evaluate

I Basic idea:
x1x2 + x1x3 + x2x3 + x3 + 1 = (x1x2 + 1) + x3(x1 + x2 + 1)

I Apply this technique recursively to fix n− k variables



9/28

/ department of mathematics and computer science

Crossbred - Missing Steps

I How to extract a sub-system?

I How to check the solvability of a linear system?
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Adaption - Extracting a Sub-system

Gaussian elimination?
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Adaption - Extracting a Sub-system

Permute columns and swap rows
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Adaption - Extracting a Sub-system

Ignore the lower part



13/28

/ department of mathematics and computer science

Adaption - Extracting a Sub-system

Reduce dimension
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Adaption - Extracting a Sub-system
I Reduced Macaulay matrix

I A rule of thumb: Gauss-Jordan elimination
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Adaption - Fixing Variables in the Sub-system

I Observation:

f(~a) = f(~a′) +
∂f

∂xi
(~a′).

when ~a and ~a′ differs only by one coordinate.

I For sub-system S of m degree-D equations in n variables, fix
n− k variables in S takes O(D · k) instructions.
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Adaption - Fixing Variables in the Sub-system

Example

f(x4, x5, x6, x7) = x1x4x5x6 + x1x4x5x7 + x4x5x6x7 + x1x4x5+

x2x4x6 + x4x6x7 + x1x4 + x1x5 + x5x7+

x6x7 + x1 + x2 + x4 + 1

∂f

∂x4
= x1x5x6 + x1x5x7 + x5x6x7 + x1x5 + x2x6 + x6x7 + x1 + 1

∂2f

∂x4∂x7
= x1x5 + x5x6 + x6

∂3f

∂x4∂x6∂x7
= x5 + 1
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Adaption - Fixing Variables in the Sub-system

f(0,0, 0, 0) = f(1,0, 0, 0) +
∂f

∂x4
(1,0, 0, 0)

= f(1,0, 0, 0) +
∂f

∂x4
(1,0, 0, 1) +

∂2f

∂x4∂x7
(1,0, 0, 1)

= f(1,0, 0, 0) +
∂f

∂x4
(1,0, 0, 1) +

∂2f

∂x4∂x7
(1,0, 1, 1) +

∂3f

∂x4∂x6∂x7
(1,0, 1, 1)

= f(1,0, 0, 0) +
∂f

∂x4
(1,0, 0, 1) +

∂2f

∂x4∂x7
(1,0, 1, 1) +

∂3f

∂x4∂x6∂x7
(1,0, 1, 0) +

∂4f

∂x4∂x6∂x7∂x7

= f(1,0, 0, 0) +
∂f

∂x4
(1,0, 0, 1) +

∂2f

∂x4∂x7
(1,0, 1, 1) +

∂3f

∂x4∂x6∂x7
(1,0, 1, 0) + 0

= f(1,0, 0, 0) +
∂f

∂x4
(1,0, 0, 1) +

∂2f

∂x4∂x7
(1,0, 1, 1) + 1

= f(1,0, 0, 0) +
∂f

∂x4
(1,0, 0, 1) + 1+ 1

= f(1,0, 0, 0) + x1 + 1+ 1+ 1

= x2 + x1 + 1+ 1+ 1

= x1 + x2 + 1

because 1010→ 1011→ 1001→ 1000→ 0000



18/28

/ department of mathematics and computer science

Adaption - Testing a Linear System

Gauss-Jordan elimination?
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Adaption - Testing a Linear System

A better variant:
I O(k2) instructions for testing
I O(k) instructions for extracting a solution
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Adaption - Parallelization

I Split search space into N smaller sub-spaces and launch N
threads?

• Different starting points → not ideal for GPU because divergent
paths

I Fix t variables in the sub-system to create 2t smaller sub-systems

• Same enumeration starting point
• Same last order partial derivatives
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The Adapted Crossbred Algorithm

Input MQ system

Compute a Macaulay matrix

Extract a sub-system

Fix t variables

Fix n− k− t variables

Found a solution?

Output the solution

No

Yes
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MQsolver

I From scratch

I Pure C
I Generate C code with Python script
I Part on CPU, part on GPU → pipeline
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Environment

The Saber cluster:
https://blog.cr.yp.to/20140602-saber.html

I GTX 780 / GTX 980
I AMD FX-8350 @4GHz

https://blog.cr.yp.to/20140602-saber.html
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Test Benches

Fukuoka MQ type 1 challenges: n = 55 to 74, m = 2n
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m = 2n

For n = 67:
I Crossbred: 6200 CPU-hours (Xeon 2690)

I Parallel Crossbred: 98.39 GPU-hours (GTX 980)

For n = 74:

I Crossbred: 360, 000 CPU-hours
I Parallel Crossbred: 8236.05 GPU-hours
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Breaking a Post-quantum Cryptographic Scheme

I "Public Key Identification Schemes based on Multivariate
Quadratic Polynomials", Koichi Sakumoto, Taizo Shirai,
Harunaga Hiwatari, CRYPTO 2011

I MQ system where n = 84, m = 80

I GPU: Nvidia GTX 980
I At most 37000, on average: 3600 (GPU-years)
I Claimed to have 80 bits of security, in fact only 76.5 bits
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Conslusion

I Parallel Crossbred outperforms the orginal Crossbred algorithm
by a factor as high as ≈ 60.

I We solved all the Fukuoka MQ type I challenges, n = 55 to 74.
I We showed that a post-quantum cryptographic scheme whose
security relies on an MQ system where n = 84 and m = 80 can be
broken with 37000 GPUs in at most one year, and on average 35
days.

I We showed that an MQ system with only 80 bits of security
should not be considered secure anymore.
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Q & A

Thank you for attention!
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