
G-Merkle: A Hash-Based Group Signature
Scheme From Standard Assumptions

Rachid El Bansarkhani

Technische Universität Darmstadt, Germany

elbansarkhani@cdc.informatik.tu-darmstadt.de

Rafael Misoczki

Intel Corporation, USA

Rafael.Misoczki@intel.com

Agenda

• Motivation

• Introduction
• Group Signatures

• Hash-Based Signatures

• G-Merkle
• Definition

• Security Assessment

• Performance Results

• Conclusions

1G-Merkle - Rachid El Bansarkhani and Rafael Misoczki

Digital Signatures vs. Privacy

Traditional digital signatures do not offer privacy-preserving features:

2G-Merkle - Rachid El Bansarkhani and Rafael Misoczki

1 key pair per user

Public key

Private key A

Bob

B

Charlie

C

Alice

Sign (,) →

Signer

Sign (,) →

Sign (,) →

1

2

3

1

2

3

Verify (,) → ⊤/⊥

Verifier

A 1

Verify (,) → ⊤/⊥A 2

Verify (,) → ⊤/⊥B 3

Verifier needs to know the correct public key to verify a
given signature (thus able to link signatures, at least)

Key Setup: Sign/Verify:

A B

C

C

A

A

B

Remote Attestation

Allows a device to prove the authenticity of its software/firmware

G-Merkle - Rachid El Bansarkhani and Rafael Misoczki 3

BobAlice

Can I have access to Service XYZ?

At first, prove that your SW/FW is authentic

Cryptographically secure attestation

Alice is authorized to access Service XYZ

If the cryptographically secure attestation
provided by Alice uses traditional digital
signatures, Bob may learn what services

Alice is interested to get access

Remote Attestation is one example of application that would benefit from privacy-preserving signatures

Privacy-Preserving Signatures

Group signatures allow a group member to anonymously sign messages on behalf of the whole group:

4G-Merkle - Rachid El Bansarkhani and Rafael Misoczki

1 public key per group

Public key

Private key A

Bob

B

Charlie

C

Alice

Sign (,) →A

Signer

Sign (,) →B

Sign (,) →C

1

2

3

1

2

3

Verify (,) → ⊤/⊥

Verifier

1

Verify (,) → ⊤/⊥2

Verify (,) → ⊤/⊥3

Verifier does not know who (among all group members)
generate the signatures

Key Setup: Sign/Verify:

Group Signatures

G-Merkle - Rachid El Bansarkhani and Rafael Misoczki 5

Entities:

• Group Manager (GM): Responsible for the group management,
including key generation and signature opening

• Group Member (User): Able to sign data such that his/her identity
is concealed from any verifier other than the group manager

• Verifier: Able to verify the authenticity of group signatures, but
not able to determine the identify of the signer

Algorithms:

• Parameters: 𝑘 security parameter, 𝑁 number of group members

• 𝑔𝑚𝑠𝑘, 𝑔𝑝𝑘, 𝑔𝑠𝑘0, … , 𝑔𝑠𝑘𝑁−1
←G.KeyGen(1𝑘, 1𝑁)

• 𝜎 ←G.Sign(𝑔𝑠𝑘𝑖 , 𝑚)

• ⊤/⊥←G.Verify(𝜎,𝑚, 𝑔𝑝𝑘)

• 𝑖 ←G.Open(𝑔𝑚𝑠𝑘, 𝜎,𝑚)

Main Security Properties:
• Untraceability: Given a signature, it is hard to determine the

identity of the signer group member

• Unlinkability: Given any two signatures, it is hard to
determine if they were issued by a same group member

Correctness Properties:

• G.Verify(G.Sign(𝑔𝑠𝑘𝑖 , 𝑚), 𝑚, 𝑔𝑝𝑘) = ⊤

• G.Open(𝑔𝑚𝑠𝑘, G.Sign(𝑔𝑠𝑘𝑖 , 𝑚), 𝑚) = 𝑖

Group Signatures

• Most group signature schemes are based on number-theory cryptography
• To mention a few: [ACJT00, CL02, BMW03, CL04, BSZ05, DP06, BW06, BW07, Gro07]
• Intel® Enhanced Privacy ID (EPID) [BL09]: based on pairing-based cryptography
• Quantum computers are expected to offer a dramatic speed-up to solve the underlying

security problems of number-theory based cryptography [Shor94]

• Recent increasing interest in defining post-quantum group signatures:
• Lattice-Based Group Signatures: [GKV10, LLLS13, LLNW14, NZZ15, LNW15]
• Code-Based Group Signatures: [ELL+15]
• All those schemes rely on additional security assumptions (e.g. shortest vectors in a lattice)

Can we build a group signature scheme out of standard (minimal) assumptions?

G-Merkle - Rachid El Bansarkhani and Rafael Misoczki 6

Hash-Based Signatures (HBS)
• Security:

• The security of digital signature schemes with appended message relies on the security of
hashing1 + some other (believed-to-be-hard) problem

• HBS base their security solely on well-known security notions from hash (e.g. pre-image)

• Efficiency: Keygen/sign/verify operations boil down to hash function calls

• One-Time and Multi-Time Hash-Based Signatures:

7G-Merkle - Rachid El Bansarkhani and Rafael Misoczki

1: Hash used to map the arbitrary-length input into a fixed-length input.

One-Time Signature (OTS):
Signing key should not be used to generate more than one signature

Multi-time Signature (MTS):
Uses one-time signature scheme to build multi-time signature scheme

1 signing key
1 signature

1 verification key
1 verification key

2ℎ one-time signing keys 2ℎ signatures

...

...

...1 key seed

M
erkle Tree

K
D

F

Merkle Signature Scheme (MSS) [Mer79]

G-Merkle - Rachid El Bansarkhani and Rafael Misoczki 8

Keys:
• Public-key: Root of the tree
• Private key: Seed (to generate one-time keys)

Authentication path:
• Nodes required to recompute the root
• Updating auth. cost: variable latency
• It does not depend on message (offline)

Signature is valid if:
• Computed root == public-key

Drawbacks:
• Stateful: private key changes over time
• (Virtual) limitation on num. of signatures

XMSS [BDH11] & LMS [LM95] Schemes:
• Reduces MSS signature size
• Milder security assumptions than MSS
• IETF drafts in advanced stage

The same simplicity that leads to secure and efficient HBS schemes seemed to prevent the design
of more elaborated schemes (e.g. hash-based group signatures)

9G-Merkle - Rachid El Bansarkhani and Rafael Misoczki

G-Merkle – Initial Thoughts

Naïve approach: Each group member generates its own height-ℎ′ sub-tree and append it to the main tree:

Problem: all signatures from a same user would share at least one node at level ℎ′ in the authentication path:

This property could be used to link signatures

Group

Public key

𝐻(𝑝𝑘1) 𝐻(𝑝𝑘2) 𝐻(𝑝𝑘7) 𝐻(𝑝𝑘8)
....

……

𝐻(𝑝𝑘3) 𝐻(𝑝𝑘4)

…
.

ℎ = 3

ℎ′ = 1

Leaf nodes of User1 Leaf nodes of User2 Leaf nodes of User4

𝐻(𝑝𝑘5) 𝐻(𝑝𝑘6)

Leaf nodes of User3

Illustrative description
using toy parameters
ℎ = 3 and ℎ′ = 1

Idea: Group shares a same Merkle tree. All group members will use the same group public key (root node)

10G-Merkle - Rachid El Bansarkhani and Rafael Misoczki

G-Merkle – Simplified Description

• Each user owns 2ℎ
′

leaf nodes, as before. However, before building the tree, the leaf nodes are shuffled:

• The shuffling process is computed by the GM by means of a secret key and a Pseudo-Random Permutation (PRP)

• Unlinkability: the authentication path of signatures issued by a same signer will not share nodes, w.h.p.

Group

Public key

𝐻(𝑝𝑘1) 𝐻(𝑝𝑘2) 𝐻(𝑝𝑘7) 𝐻(𝑝𝑘8)

……

𝐻(𝑝𝑘1) 𝐻(𝑝𝑘2) 𝐻(𝑝𝑘1) 𝐻(𝑝𝑘2)

ℎ = 3

ℎ′ = 1

Illustrative description
using toy parameters
ℎ = 3 and ℎ′ = 1

G-Merkle

• Let:
• 𝐸, 𝐷 be the encryption and decryption algorithms of a block cipher

• 𝑘: sec. parameter, 𝑁: number of group members, 𝐵: number of signatures per member

• G.KeyGen(1𝑘 , 1𝑁):
1. GM generates a random symmetric key 𝑔𝑚𝑠𝑘

2. Each user 𝑖 ∈ [1,𝑁] generates 𝐵 one-time key pairs from a secret 𝑔𝑠𝑘𝑖
3. GM shuffles the indices of the leaf nodes: (𝑗1, … , 𝑗𝑁⋅𝐵), where 𝑗𝑠 ←

𝐸𝑔𝑚𝑠𝑘(𝑠) for 𝑠 ∈ [1,𝑁 ⋅ 𝐵]

4. GM builds a Merkle tree using the leaf nodes in shuffled order

5. GM provides to each user 𝑖 a list of tuples with their set of shuffled indices:
𝑆𝑖 = {𝑗 𝑖−1 𝐵+1, … , 𝑗𝑖𝐵}

G-Merkle - Rachid El Bansarkhani and Rafael Misoczki 11

G-Merkle

• G.Sign(𝑔𝑠𝑘𝑖 , 𝑚):
• As in the Merkle Signature Scheme

• G.Verify(𝜎,𝑚, 𝑔𝑝𝑘):
• As in the Merkle Signature Scheme

• G.Open(𝑔𝑚𝑠𝑘, 𝜎,m):
1. By examining the authentication path, GM recovers the shuffled index

2. Decrypts the shuffled index to recover the original index and therefore
determine the signer identity

G-Merkle - Rachid El Bansarkhani and Rafael Misoczki 12

G-Merkle

• G-Merkle vs. Lattice-Based Group Signatures [LLNW15]:
• Group public key size: 𝑛 vs. Õ(𝑙𝑜𝑔𝑁 ⋅ 𝑛)

• Signature size: 𝑂(𝜎𝑂𝑇𝑆 + 𝑛(𝑙𝑜𝑔𝑁 + 𝑙𝑜𝑔𝐵)) vs. Õ 𝑙𝑜𝑔𝑁 ⋅ 𝑛 ∗

• Computing the authentication path of a signature: a few options
• The tree is not secret, thus it can be made publicly available

• It can be obtained by the user from Group Manager in key generation time

• It can be obtained by the user from Group Manager in an online fashion

• G-Merkle inherits some properties from Merkle Signature Scheme:
• Stateful signature scheme: state misuse can lead to security issues

• (Exponentially large, but) limited number of signatures

G-Merkle - Rachid El Bansarkhani and Rafael Misoczki 13
*: or Õ(𝑙𝑜𝑔𝑁 ⋅ 𝑛2) for unstructure lattices.

Security Assessment

• For security, we prove Traceability and Anonymity:

• Traceability: Allows the group manager possessing the master secret
key to unveil the identity of a group signer.

• G-Merkle is fully-traceable following [BMW03].

• Proof is based on the existential unforgeability of the underlying Merkle
Signature Scheme construction. As long as an adversary cannot sign on behalf
of an honest signer or change the index, the real identity of a leaf can be
recovered from its index.

Security Assessment

• For security, we prove Traceability and Anonymity:

• (S)PRP-Anonymity: An adversary, capable of corrupting signers, is not able
to determine, which honest identity/signer (at least 2) actually signed a
message in the security game.

• ”weak” PRP-Anonymity: Adversary must guess the identity of a signer without
access to the opening oracle (weak anonymity).

• SPRP-Anonymity: Adversary is additionally given access to the opening oracle

• Anonymity follows from the pseudorandomness of the used (S)PRP.
• PRPs can be built from PRF following the generic way [NR96]

Performance Results

16G-Merkle - Rachid El Bansarkhani and Rafael Misoczki

C Implementation of G-Merkle based on XMSS/WOTS+ (as defined in [HBGM18]), SHA2-256 and AES-256.

Conclusions

• G-Merkle answers the open question on the feasibility of building
Group Signature schemes from standard (minimal) assumptions

• Security relies on hash function and PRPs (e.g. block ciphers)

• Sign and verify just as efficient as Merkle Signature Schemes

• Auth. path approach can be selected depending on the application

17G-Merkle - Rachid El Bansarkhani and Rafael Misoczki

G-Merkle: A Hash-Based Group Signature
Scheme From Standard Assumptions

Rachid El Bansarkhani

Technische Universität Darmstadt, Germany

elbansarkhani@cdc.informatik.tu-darmstadt.de

Rafael Misoczki

Intel Corporation, USA

Rafael.Misoczki@intel.com

References
• [ACJT00]: Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical and provably secure coalition-resistant group signature scheme. In Mihir Bellare, editor,

Advances in Cryptology CRYPTO 2000, volume 1880 of LNCS, pages 255-270, Santa Barbara, CA, USA, 2000. Springer, Heidelberg, Germany.

• [BL07]: Ernie Brickell and Jiangtao Li. Enhanced Privacy ID: A direct anonymous attestation scheme with enhanced revocation capabilities. In Proceedings of the 6th ACM
Workshop on Privacy in the Electronic Society. ACM Press, October 2007.

• [BL09]: Brickell, E. and Li, J., 2009. Enhanced Privacy ID from Bilinear Pairing. IACR Cryptology ePrint Archive, 2009, p.95.

• [BDH11]: Buchmann, J., Dahmen, E., and A. Huelsing, "XMSS – A Practical Forward Secure Signature Scheme Based on Minimal Security Assumptions", Lecture Notes in Computer
Science volume 7071. Post-Quantum Cryptography, 2011.

• [ELL+15]: Martianus Frederic Ezerman, Hyung Tae Lee, San Ling, Khoa Nguyen, and
Huaxiong Wang. A provably secure group signature scheme from codebased assumptions. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology { ASIACRYPT 2015,
Part I, volume 9452 of LNCS, pages 260{285, Auckland, New Zealand, November 30 {December 3, 2015. Springer, Heidelberg, Germany.

• [LLNW14]: Adeline Langlois, San Ling, Khoa Nguyen, and Huaxiong Wang. Latticebased group signature scheme with verifier-local revocation. In PKC 2014,
pages 345{361. Springer, 2014.

• [LLS13]: Fabien Laguillaumie, Adeline Langlois, Beno^ıt Libert, and Damien Stehl´e. Lattice-based group signatures with logarithmic signature size. In ASIACRYPT 2013, pages
41{61. Springer, 2013.

• [LM95]: Leighton, F., Micali, S.: Large provably fast and secure digital signature schemes based on secure hash functions. 1995. US Patent 5,432,852.

• [LNW15]: San Ling, Khoa Nguyen, and Huaxiong Wang. Group signatures from lattices: Simpler, tighter, shorter, ring-based. In Jonathan Katz, editor, PKC 2015: 18th International
Conference on Theory and Practice of Public Key Cryptography, volume 9020 of LNCS, pages 427{449. Springer, Germany, March 30 { April 1, 2015.

• [NZZ15]: Phong Q. Nguyen, Jiang Zhang, and Zhenfeng Zhang. Simpler efficient group signatures from lattices. In PKC, pages 401{426. Springer, 2015.

• [Mer79]: Ralph Merkle. "Secrecy, authentication and public key systems / A certified digital signature". Ph.D. dissertation, Dept. of Electrical Engineering, Stanford University,
1979.

• [NR96]: Moni Naor and Omer Reingold. On the construction of pseudo-random permutations: Luby-rackoff revisited. IACR ePrint, 1996:11, 1996

• [Shor96]: Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In 35th Annual Symposium on Foundations of Computer Science, pages
124{134, Santa Fe, New Mexico, November 20{22, 1994. IEEE Computer Society Press.

19G-Merkle - Rachid El Bansarkhani and Rafael Misoczki

G-Merkle

• Instantiating PRPs from One-Way Functions
• PRPs can be built from PRFs [LR86]
• PRFs can be built from One-Way Functions [GGM86]
• Thus, OWFs suffice to construct secure PRPs
• By using a OWF in G-Merkle, we ensure that the whole scheme is only based on

OWF, which is the minimal requirement for the existence of public key crypto

• Instantiating PRPs from Block Ciphers
• It is more efficient to instantiate PRP by means of a block cipher
• In practice, we don’t find block ciphers with such small outputs and high security
• We can use large block ciphers (e.g. AES128) by defining the new (shuffled) order

considering only the order of the encrypted indices (uses a sorting algorithm)

20G-Merkle - Rachid El Bansarkhani and Rafael Misoczki

