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introduction

1. Code based cryptography

Difficult problem in coding theory

Problem 1. [Decoding]
Input: n, r, t with r < n, parity-check matrix H ∈ Fr×nq , s ∈ Frq
Question: ∃? e such that{

Heᵀ = sᵀ

|e| 6 t

where |e| = hamming weight of e = #{i ∈ J1, nK, ei 6= 0}.

Problem NP -complete
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introduction

The dual problem

Code C
def
=

{
c ∈ Fnq : Hcᵀ = 0

}
dimC = n− r = k

Input: t , C subspace of dim k of Fnq , y ∈ Fnq

Question: ∃? c ∈ C such that |y − c| 6 t.

H(y − c)︸ ︷︷ ︸
e

ᵀ
= Hyᵀ = sᵀ

y = the word that we want to decode

e = y − c = the error we want to find
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introduction

A long-studied problem

Correct. t errors in a code of length n and dim. k has cost Õ(2α(kn,
t
n)n)

Author(s) Year max
R,τ

α(R, τ)

Prange 1962 0.1207

Stern 1988 0.1164

Dumer 1991 0.1162

Bernstein, Lange, Peters 2011

May, Meurer and Thomae 2011 0.1114

Becker, Joux, May, Meurer 2012 0.1019

May, Ozerov 2015 0.0966

Both, May 2017 0.0953

Both, May 2018 0.0885
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introduction

Complexities collapse when t = o(n)

I [CantoTorres, Sendrier, 2016] complexity 2− log(1−R)t(1+o(1)) when

t = o(n) and where R = k/n
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introduction

Code-based cryptography

Code C
def
= {c ∈ Fnq : Hcᵀ = 0}

I Take a code that has an efficient decoding algorithm

I Public key: random parity-check matrix of the code H rand = QH

where Q is a random invertible matrix in Fr×rq

I Private key: trapdoor to the efficient decoding algorithm
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introduction

Two approaches

I Pick up your favorite code (that has an efficient decoder)

I Choose a code/scheme with a reduction to decoding a generic

linear code
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introduction

History

I 1978 McEliece: binary Goppa codes

I 1986 Niederreiter variant based on GRS codes

I 1991 Gabidulin, Paramonov, Tretjakov: Gabidulin codes

I 1994 Sidelnikov: Reed-Muller codes

I 1996 Janwa-Moreno: algebraic geometric codes

I 199* a zillion propositions with LDPC codes

I 2003 Alekhnovich: Alekhnovich system

I 2005 Berger-Loidreau: subcodes of GRS codes

I 2006 Wieschebrink, GRS codes + random columns in the generator

matrix
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I 2008 Baldi-Bodrato-Chiaraluce: LDPC based MDPC codes

I 2010 Bernstein, Lange, Peters: non-binary wild Goppa codes

I 2012 Misoczki-Tillich-Barreto-Sendrier: MDPC codes

I 2012 Löndahl-Johansson: convolutional codes

I 2013 Gaborit, Murat, Ruatta, Zémor: LRPC codes

I 2014 Shrestha, Kim: polar codes

I 2014 Hooshmand, Shooshtari, Eghlidos, Aref: subcodes of polar

codes
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Code based NIST submissions in Hamming metric

Algebraic codes

BIG QUAKE

Classic McEliece

NTS−KEM

pqsigRM

Reed−Muller related

binary Goppa codes

m=2

m=3

m=1

RLCE−KEM

DAGS
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Code based NIST submissions in Hamming metric

Non-algebraic codes

• BIKE

• HQC

• LEDAkem

• LEDApkc

• Lepton

• QC-MDPC

• RaCoSS
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Code based NIST submissions in the rank metric

• Edon-K

• LAKE

• LOCKER

• McNie

• Ourobouros-R

• RankSign

• RQC
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2. The main cryptanalytic techniques for attacking
the key

I Finding small weight codewords in C or in C⊥ that reveal the

underlying structure

I Algebraic attacks

I Product considerations

I Folding techniques

I Computing the hull C ∩ C⊥
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product

3. Product considerations
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product

Square code attacks

Definition 1. [Componentwise product] Given two vectors a =

(a1, . . . , an) and b = (b1, . . . , bn) ∈ Fnq , we denote by a ? b the

componentwise product

a ? b
def
= (a1b1, . . . , anbn)

Definition 2. [Product of codes & square code] The star product

code denoted by A ? B of A and B is the vector space spanned by

all products a ? b where a and b range over A and B respectively.

When B = A, A ? A is called the square code of A and is rather

denoted by A2.

14/52



product

Dimension of the square code

A and B codes with respective bases (ai) and (bj).

1. dim(A ?B) 6 dim(A) dim(B) (generated by the ai ? bj’s)

2. dim(A2) 6

(
dim(A) + 1

2

)
(generated by the ai ?aj’s with i 6 j)
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product

Generalized Reed-Solomon (GRS) codes

Definition 3. [Generalized Reed-Solomon code] Let k and n be

integers such that 1 6 k < n 6 q where q is a power of a

prime number. The generalized Reed-Solomon code GRSk(x,y)

of dimension k is associated to a pair (x,y) ∈ Fnq × Fnq where x is

an n-tuple of distinct elements of Fq and the entries yi are arbitrary

nonzero elements in Fq. GRSk(x,y) is defined as:

GRSk(x,y)
def
=
{

(y1p(x1), . . . , ynp(xn)) : p ∈ Fq[X],deg p < k
}
.

x is the support and y the multiplier.
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product

GRS codes, alternant codes

I A GRS code corrects n−k
2 errors.

Definition 1. Let x ∈ (Fqm)n,y ∈ (Fqm)n be as in the definition

of GRS codes. The alternant code Altr(x,y) is defined by

Altr(x,y)
def
= GRSr(x,y)⊥︸ ︷︷ ︸

GRSn−r(x,y′)

∩(Fq)n

Proposition 1.

dim Altr(x,y) > n−mr
dminAltr(x,y) > r + 1
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product

What is wrong with generalized Reed-Solomon
codes ?

When C is a random code of length n, with high probability [Cascudo,

Cramer, Mirandola, Zémor]

dim(C2) = min

{(
dim(C) + 1

2

)
, n

}
When C is a generalized Reed-Solomon code

dim(C2) = min {2 dim(C)− 1, n}
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product

The explanation

c = (y1p(x1), . . . , ynp(xn)), c′ = (y1q(x1), . . . , ynq(xn)) ∈ GRSk(x,y)

where p and q are two polynomials of degree at most k − 1.

c?c′ =
(
y2

1p(x1)q(x1), . . . , y2
np(xn)q(xn)

)
=
(
y2

1r(x1), . . . , y2
nr(xn)

)
where r is a polynomial of degree 6 2k − 2.

=⇒ c ? c′ ∈ GRS2k−1(x,y2)
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product

The Wieschebrink attack on the Berger-Loidreau
cryptosystem

• known: a subcode C ⊂ GRSk(x,y)

• unknown: x and y.

If the codimension of C is small enough

C ? C = GRSk(x,y) ? GRSk(x,y) = GRS2k−1(x,y′)

The Wieschebrink attack

1. Compute C ? C = GRS2k−1(x,y′)

2. Recover x and y′ by using the Sidelnikov-Shestakov algorithm.
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product

Filtration attack

[Couvreur, Otmani, T 2014]: Attack on wild Goppa codes when

m = 2.
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product

A filtration for GRS codes

A new attack on McEliece based on GRS codes.

known : C0 = GRSk(x,y)

unknown : x,y.

C0 = GRSk(x,y) ⊇ C1 = GRSk−1(x,y) ⊇ · · · ⊇ Ck−1 = GRS1(x,y)

The point:

• Ck−1 = {αy, α ∈ Fq}

• y known ⇒ x by solving a linear system.
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product

The fundamental induction

Ci ? Ci−2 = Ci−1 ? Ci−1

Ci ? Ci−2 = GRSk−i(x,y) ? GRSk−i+2(x,y)

= GRS2k−2i+1(x,y ? y)

= GRSk−i+1(x,y) ? GRSk−i+1(x,y)

= Ci−1 ? Ci−1
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product

The picture

binary Goppa codes
Goppa codes

wild Goppa codes

Alternant codes

m=1

m=2

m=3

GRS codes
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Code based NIST submissions in Hamming metric

Algebraic codes

BIG QUAKE

Classic McEliece

NTS−KEM

pqsigRM

Reed−Muller related

binary Goppa codes

m=2

m=3

m=1

RLCE−KEM

DAGS
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folding

4. Folding operation, the “Origami attack”
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folding

Origami attack

I Related to Gentry attack on NTRU-composite

I Applies to codes with a non trivial permutation group

For σ ∈ Sn,

cσ
def
= (cσ(i))i∈J1,nK

Cσ
def
= {cσ : c ∈ C}

σ is a permutation automorphism of C iff

Cσ = C
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folding

Examples

Parity-check matrix has a block form H =

B(11) . . . B(1n′)

... B(ij) ...

B(r′1) . . . B(r′n′)


with blocks of some size ` of the form

B(ij) =


a0 a1 · · · a`−1

a`−1 a0 · · · a`−2
... . . . . . . ...

a1 a2 · · · a0

 B(ij) =


a0 a1 a2 a3

a1 a0 a3 a2

a2 a3 a0 a1

a3 a2 a1 a0


quasi-cyclic case B

(ij)
s,t = at−s (mod `) quasidyadic case B

(ij)
s,t = at	s
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folding

Folding

I Folding x = w.r. to σ adding the coordinates in a same orbit of σ

σ = (123)(456)(678)

x = (x1, x2, x3︸ ︷︷ ︸
orbit

, . . . , x7, x8, x9︸ ︷︷ ︸
orbit

)

xσ = (x1 + x2 + x3, . . . , x7 + x8 + x8)

C
σ def

= {cσ : c ∈ C}.
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folding

Why is this an interesting operation ?

Orbits of σ of size `

I Code gets smaller

C = code of length n dim. k

→ C
σ

= code of length n/` and dim.
k

`

I Words do not increase their weight

|c| = w ⇒ |cσ|6 w
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folding

Folding quasi-∗ alternant codes/ Goppa codes

I [Faugère, Otmani, Perret, Portzamparc, T 2014] Folding the dual

of a Q*-alternant or Q*-Goppa code ⇒ dual of an alternant or a

Goppa code

I [Barelli-Couvreur 2017] Folding a Q*-alternant or a Q*-Goppa

code ⇒ alternant or a Goppa code
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folding

Message attacks

{
Heᵀ = sᵀ

|e| 6 t

⇒

{
H

σ
(eσ)

ᵀ
= (sσ)

ᵀ

|eσ| 6 t

We recover eσ (say = e0) and then solve the much easier problem
H

σ
eᵀ = sᵀ

|e| 6 t

eσ = e0
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algebraic

5. Algebraic attacks

Alternant code Altr(x,y) parity-check matrix H of the form

H =



y1 y2 . . . . . . yn
y1x1 y2x2 . . . . . . ynxn

... ... ... ... ...

... ... yjx
i
j

... ...
... ... ... ... ...

y1x
r−1
1 y2x

r−1
2 . . . . . . ynx

r−1
n


Goppa code Gop(x,Γ) = Altdeg Γ(x, 1

Γ(x)).

33/52



algebraic

Algebraic attacks

G = (gij)i∈J1,kK
j∈J1,nK

generator matrix of C = Altr(x,y).

Unknowns: y1, . . . , yn, x1, . . . , xn

2n unknowns

Algebraic system

GHᵀ = 0

⇒
n∑
j=1

gijyjx
a
j = 0 ∀(i, a) ∈ J1, kK× J0, r − 1K

k · r equations
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algebraic

When was this successful ?

• [Faugère,Otmani,Perret,T 2010-2015] Q*-alternant of Q*-Goppa

codes

• [Faugère,Perret,Portzamparc 2014] Wild Goppa codes for certain

parameters
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rank

Rank Metric

Difficult problem in coding theory

Problem 2. [Decoding]
Input: n, r, t integers, r < n, parity-check matrix H ∈ Fqmr×n,

syndrome s ∈ Frq
Question: ∃? e such that

(i) He = s,

(ii) |e| 6 t

where |e|R = rank weight of e.

Randomized reduction to NP -complete problems.
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rank

Rank metric

I (β1 . . . βm) basis of Fqm over Fq

x = (x1, . . . , xn) ∈ Fnqm →Mat(x) =


x11 x12 · · · x1n

x21 x22 · · · x2n
... ... ... ...

xm1 xm2 . . . xmn

 ∈ Fm×nq

where xj =
∑m
i=1 xijβi.

I Rank metric = viewing an element of Fnqm as an m× n matrix.

|x− y|r
def
= Rank (Mat(x)−Mat(y)) .
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Complexity of the best known algorithms

I Algebraic attacks (MinRank)

I Combinatorial attacks Õ
(
qt(k+1)−m) when m = n.
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LRPC codes

[Gaborit, Murat, Ruatta, Zémor 2013]

Definition 4. An LRPC code over Fqm of weight d is a code that

admits an (n − k) × n parity-check matrix H with entries hij that

span an Fq space of dimension d.

|x|r = dim〈x1, . . . , xn〉Fq
⇒ all rows of H have weight 6 d.

I Correct t errors when td 6 n− k.
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RankSign

Secret key H ′ where

H ′ =
[
H|R

]
P

with

H = (n− k)× n parity-check matrix of an LRPC code over Fqm

R = random (n− k)× t matrix over Fqm

P = (n+ t)× (n+ t) invertible matrix over Fq

I P isometry |xP |r = |x|r.
I LRPC code of weight d ⇒ codewords of weight 6 d + t in the

dual code.
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rank

Attack on RankSign

[Debris-Alazard, T 2018]

I Looking for low weight codewords in the dual code?
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rank

Attack on RankSign

[Debris-Alazard, T 2018]

I Looking for low weight codewords in the code itself

I Product trick
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rank

Getting rid of R

If there is a low weight codeword cLRPC in CLRPC ⇒ low weight

codeword c′ = (cLRPC,0t)(P
−1)

ᵀ
in the public code of parity-check

matrix Hpub = QH ′ =
[
H|R

]
P

Hpubc
′ᵀ = HpubP

−1(cLRPC,0t)
ᵀ

= Q
[
H|R

]
PP−1(cLRPC,0t)

ᵀ

= Q
[
H|R

]
(cLRPC,0t)

ᵀ

= QHcLRPC
ᵀ ( R ∈ F(n−k)×t

qm )

= 0 (cLRPC belongs to the code of parity-check matrix H)
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rank

Product trick

F Fq-space of dimension d generated by the entries of H parity-check

of the [n, k] LRPC code CLRPC. U and V two subspaces of Fqm,

U · V def
= 〈uv : u ∈ U, v ∈ V 〉Fq.

Lemma 1. It there exists an Fq-subspace F ′ of Fqm such that

(n− k) dim(F · F ′) < n · dimF ′.

Then there exist nonzero codewords in the LRPC code of weight

6 dimF ′.
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rank

Proof

A codeword c of the LRPC code satisfies

∀i ∈ J1, n− kK
n∑
j=1

Hi,jcj = 0. (1)

If its entries are in F ′ then
∑n
j=1Hi,jcj ∈ F · F ′

unknowns coordinates cij of cj in F ′ = 〈f ′1, . . . , f ′d′〉Fq:

cj =
∑

i∈J1,d′K

cijf
′
i

# equations = (n− k) dimF · F ′

#unknowns = n dimF ′
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Consequence on RankSign

I Necessary condition for RankSign to work n = (n− k)d

I Problem: typically dimF · F ′ = dimF dimF ′ and therefore

n dimF ′ = n · d′ = (n− k)d · d′ = (n− k) dimF · F ′

F = 〈f1, . . . , fd〉Fq
F ′

def
= 〈f1, f2〉Fq

FḞ ′ = 〈xixj : i ∈ J1, dK, j ∈ J1, 2K〉Fq
dimF · F ′ = 2d− 1< dimF dimF ′

⇒ codewords in CLRPC of weight 2
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Consequence on LRPC in general ?

I No direct attack on LRPC codes without the additional condition

n = (n− k)d
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conclusion

Conclusion

I Up to now all distinguishers of the public parity-check matrix /

random matrix⇒ with the exception of high rate alternant/Goppa

codes.

I [Faugère,Gauthier,Otmani,Perret,T 2011], [Márquez-Corbella,

Pellikaan 2012], when r is sufficiently small

dim
(
Altr(x,y)⊥ ? Altr(x,y)⊥

)
unusually small

The problem, when x, y ∈ Fnqm

Altr(x,y) = {(yjp(xj)) : deg p < n− r} ∩ Fnq

Altr(x,y)⊥ =
{(

TrFqm→Fq(yjp(xj)
)

: deg p < r
}
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conclusion

Other open problems

• improving algebraic attacks in the rank metric

• Polynomial time attacks on Reed-Muller codes ?

• other families of codes (MDPC,. . . )?
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square

What about alternant/Goppa codes ?
We have

Altr(x,y) = GRSr(x,y)⊥ ∩ Fnq
= GRSn−r(x,y

′) ∩ Fnq
Altr(x,y)2 ⊆ Alt2r−n+1(x,y′)

and

dim Altr(x,y) > n−mr.

Fact 1. To distinguish we need

2r − n+ 1 > 0 =⇒ r > n/2,

however

m > 1 =⇒ n−mr 6 0.
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square

A miracle when m = 2 in the case of wild Goppa
codes

Theorem 1. [Couvreur, Otmani, Tillich] When Altr(x,y) is a

wild Goppa code (here r = (q − 1)r′)

Altr(x,y) > n− 2r + r′(r′ − 2)

and for r close to n/2 we may have wild Goppa codes of small

dimension such that

2r − n+ 1 > 0
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square

Shortening trick for other dimensions

A shortened alternant code is still an alternant code of the same

degree r as the original alternant code.

I Leads to a distinguisher of wild Goppa codes when m = 2

I Leads to an attack of the McEliece scheme based on wild Goppa

codes when m = 2. First time that there is an attack working in

polynomial time on a McEliece scheme based on Goppa codes.
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