

Attacks on the Mersenne-based AJPS cryptosystem

Koen de Boer ¹, L. Ducas ¹, S. Jeffery ^{1,2}, R. de Wolf ^{1,2,3}

¹Centrum Wiskunde en Informatica, Amsterdam

²QuSoft, Amsterdam

³University of Amsterdam

April 9, 2018

Aggarwal, Joux, Prakash, Santha [AJPS17]

 Propose potentially quantum-safe public-key cryptosystem based on Mersenne numbers and NTRU [HPS98].

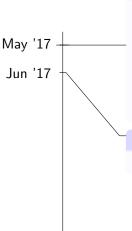
May '17 -

Aggarwal, Joux, Prakash, Santha [AJPS17]

- Propose potentially quantum-safe public-key cryptosystem based on Mersenne numbers and NTRU [HPS98].
- Consider but dismiss Meet-in-the-Middle and lattice attacks.

Aggarwal, Joux, Prakash, Santha [AJPS17]

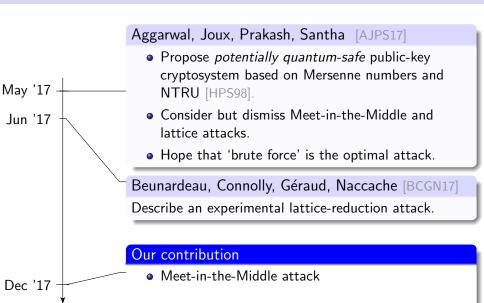
- Propose potentially quantum-safe public-key cryptosystem based on Mersenne numbers and NTRU [HPS98].
- Consider but dismiss Meet-in-the-Middle and lattice attacks.
- Hope that 'brute force' is the optimal attack.

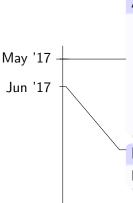


Aggarwal, Joux, Prakash, Santha [AJPS17]

- Propose potentially quantum-safe public-key cryptosystem based on Mersenne numbers and NTRU [HPS98].
- Consider but dismiss Meet-in-the-Middle and lattice attacks.
- Hope that 'brute force' is the optimal attack.

Beunardeau, Connolly, Géraud, Naccache [BCGN17] Describe an experimental lattice-reduction attack.





Dec '17

Aggarwal, Joux, Prakash, Santha [AJPS17]

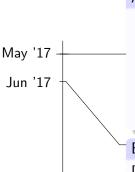
- Propose potentially quantum-safe public-key cryptosystem based on Mersenne numbers and NTRU [HPS98].
- Consider but dismiss Meet-in-the-Middle and lattice attacks.
- Hope that 'brute force' is the optimal attack.

Beunardeau, Connolly, Géraud, Naccache [BCGN17]

Describe an experimental lattice-reduction attack.

Our contribution

- Meet-in-the-Middle attack
- Analysis of the lattice-attack of Beunardeau et al.



Aggarwal, Joux, Prakash, Santha [AJPS17]

- Propose potentially quantum-safe public-key cryptosystem based on Mersenne numbers and NTRU [HPS98].
- Consider but dismiss Meet-in-the-Middle and lattice attacks.
- Hope that 'brute force' is the optimal attack.

Beunardeau, Connolly, Géraud, Naccache [BCGN17]

Describe an experimental lattice-reduction attack.

Our contribution

- Meet-in-the-Middle attack ← this talk
- Analysis of the lattice-attack of Beunardeau et al.

Table of Contents

1 The Mersenne-number based AJPS-cryptosystem

- 2 Meet-in-the-Middle attack on the AJPS cryptosystem
 - Example: Subset-sum problem
 - MITM in the AJPS-cryptosystem

• Set $R = \mathbb{Z}/N\mathbb{Z}$, where $N = 2^n - 1$ with n prime.

- Set $R = \mathbb{Z}/N\mathbb{Z}$, where $N = 2^n 1$ with n prime.
- Each element in R can be uniquely identified by its binary representation in $\{0,1\}^n\setminus\{1^n\}$.

$a \in R$	bin. rep.	a
0	0000	0
1	0001	1
2	0010	1
3	0011	2
:	:	:
$2^{n} - 2$	1110	n-1

- Set $R = \mathbb{Z}/N\mathbb{Z}$, where $N = 2^n 1$ with n prime.
- Each element in R can be uniquely identified by its binary representation in $\{0,1\}^n\setminus\{1^n\}$.
- For $a \in R$, set |a| := the Hamming weight of the binary representation of a.

$a \in R$	bin. rep.	a
0	0000	0
1	0001	1
2	0010	1
3	0011	2
:	:	:
$2^{n} - 2$	1110	n-1

- Set $R = \mathbb{Z}/N\mathbb{Z}$, where $N = 2^n 1$ with n prime.
- Each element in R can be uniquely identified by its binary representation in $\{0,1\}^n\setminus\{1^n\}$.
- For $a \in R$, set |a| := the Hamming weight of the binary representation of a.

$a \in R$	bin. rep.	a
0	0000	0
1	0001	1
2	0010	1
3	0011	2
:	:	:
$2^{n} - 2$	1110	n-1

- Set $R = \mathbb{Z}/N\mathbb{Z}$, where $N = 2^n 1$ with n prime.
- Each element in R can be uniquely identified by its binary representation in $\{0,1\}^n\setminus\{1^n\}$.
- For $a \in R$, set |a| := the Hamming weight of the binary representation of a.
- Set $w = \lfloor \sqrt{n}/2 \rfloor$.

- Set $R = \mathbb{Z}/N\mathbb{Z}$, where $N = 2^n 1$ with n prime.
- Each element in R can be uniquely identified by its binary representation in $\{0,1\}^n\setminus\{1^n\}$.
- For $a \in R$, set |a| := the Hamming weight of the binary representation of a.
- Set $w = |\sqrt{n}/2|$.
- Choose $f, g \in R$ such that |f| = |g| = w and g invertible.

$$f=rac{1}{2}$$

- Set $R = \mathbb{Z}/N\mathbb{Z}$, where $N = 2^n 1$ with n prime.
- Each element in R can be uniquely identified by its binary representation in $\{0,1\}^n\setminus\{1^n\}$.
- For $a \in R$, set |a| := the Hamming weight of the binary representation of a.
- Set $w = |\sqrt{n}/2|$.
- Choose $f, g \in R$ such that |f| = |g| = w and g invertible.
- Set h = f/g. Public key is h and secret key g.

$$f=$$
 , $g=$, $h=rac{f}{g}=$, $g=$

- Set $R = \mathbb{Z}/N\mathbb{Z}$, where $N = 2^n 1$ with n prime.
- Each element in R can be uniquely identified by its binary representation in $\{0,1\}^n\setminus\{1^n\}$.
- For $a \in R$, set |a| := the Hamming weight of the binary representation of a.
- Set $w = |\sqrt{n}/2|$.
- Choose $f, g \in R$ such that |f| = |g| = w and g invertible.
- Set h = f/g. Public key is h and secret key g.

- Set $R = \mathbb{Z}/N\mathbb{Z}$, where $N = 2^n 1$ with n prime.
- Each element in R can be uniquely identified by its binary representation in $\{0,1\}^n\setminus\{1^n\}$.
- For $a \in R$, set |a| := the Hamming weight of the binary representation of a.
- Set $w = |\sqrt{n}/2|$.
- Choose $f, g \in R$ such that |f| = |g| = w and g invertible.
- Set h = f/g. Public key is h and secret key g.

The Mersenne Low Hamming Ratio Problem

• Given $h \in R$, which is quotient of two elements of low Hamming wt.

- Set $R = \mathbb{Z}/N\mathbb{Z}$, where $N = 2^n 1$ with n prime.
- Each element in R can be uniquely identified by its binary representation in $\{0,1\}^n\setminus\{1^n\}$.
- For $a \in R$, set |a| := the Hamming weight of the binary representation of a.
- Set $w = |\sqrt{n}/2|$.
- Choose $f, g \in R$ such that |f| = |g| = w and g invertible.
- Set h = f/g. Public key is h and secret key g.

- Given $h \in R$, which is quotient of two elements of low Hamming wt.
- Find $f, g \in R$ with |f| = |g| = w such that h = f/g.

- Set $R = \mathbb{Z}/N\mathbb{Z}$, where $N = 2^n 1$ with n prime.
- Each element in R can be uniquely identified by its binary representation in $\{0,1\}^n\setminus\{1^n\}$.
- For $a \in R$, set |a| := the Hamming weight of the binary representation of a.
- Set $w = |\sqrt{n}/2|$.
- Choose $f, g \in R$ such that |f| = |g| = w and g invertible.
- Set h = f/g. Public key is h and secret key g.

The Mersenne Low Hamming Ratio Problem

- Given $h \in R$, which is quotient of two elements of low Hamming wt.
- Find $f, g \in R$ with |f| = |g| = w such that h = f/g.

Brute force attack: Guess a $g \in R$ with |g| = w, check whether |gh| = w. time: $\binom{n}{w}$.

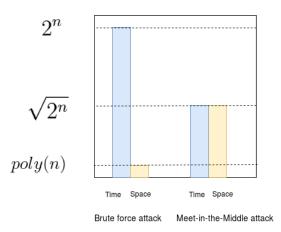
Table of Contents

1 The Mersenne-number based AJPS-cryptosystem

- Meet-in-the-Middle attack on the AJPS cryptosystem
 - Example: Subset-sum problem
 - MITM in the AJPS-cryptosystem

Meet-in-the-Middle attack

Improved time complexity, at the cost of greater space complexity.



Subset-sum problem

Given $z_1, \ldots, z_n \in \mathbb{Z}$

Find $I \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in I} z_i = 0$.

Subset-sum problem

Given $z_1, \ldots, z_n \in \mathbb{Z}$

Find $I \subseteq \{1, ..., n\}$ such that $\sum_{i \in I} z_i = 0$.

z_1	6	i	L[i]	
<i>z</i> ₂	2			
<i>Z</i> ₁ <i>Z</i> ₂ <i>Z</i> ₃	-1			
<i>Z</i> 4	10			
Z ₄ Z ₅ Z ₄	9			
<i>Z</i> 4	-5			

Subset-sum problem

Given $z_1, \ldots, z_n \in \mathbb{Z}$ Find $I \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in I} z_i = 0$.

<i>z</i> ₁	6	i	L[i]	
<i>z</i> ₁ <i>z</i> ₂	2	6	{1}	
<i>Z</i> 3	-1			
<i>Z</i> 4	10			
Z ₄ Z ₅ Z ₄	9			
<i>Z</i> 4	-5			

Subset-sum problem

Given $z_1, \ldots, z_n \in \mathbb{Z}$ Find $I \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in I} z_i = 0$.

z ₁ z ₂ z ₃	6 2 -1	6 8	L[i] {1} {1,2}
<i>Z</i> 4	10		
<i>Z</i> ₄ <i>Z</i> ₅	9		
<i>Z</i> 4	-5		

Subset-sum problem

Given $z_1, \ldots, z_n \in \mathbb{Z}$ Find $I \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in I} z_i = 0$.

z ₁ z ₂ z ₃	6 2 -1	6 8 7	$ \begin{array}{c} L[i] \\ \{1\} \\ \{1,2\} \\ \{1,2,3\} \end{array} $
<i>Z</i> 4	10		
<i>Z</i> ₄ <i>Z</i> ₅	9		
<i>Z</i> 4	-5		

Subset-sum problem

Given $z_1, \ldots, z_n \in \mathbb{Z}$ Find $I \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in I} z_i = 0$.

<i>z</i> ₁	6	i	<i>L</i> [<i>i</i>]
<i>z</i> ₂	2	-1	{3}
<i>z</i> ₃	-1	2	{2,3} {2}
	10	5	{1,3}
<i>Z</i> 4	9	6	{1}
<i>Z</i> 5	9	7	{1, 2, 3}
<i>Z</i> 4	一ち	8	{1,2}

Subset-sum problem

- For all $I_1 \subseteq \{1, \ldots, n/2\}$, store I_1 in the bucket $L\left[\sum_{i \in I_1} z_i\right]$.
- For every $I_2 \subseteq \{n/2+1,\ldots,n\}$ do

<i>z</i> ₁	6	i	<i>L</i> [<i>i</i>]
<i>z</i> ₂	2	-1	{3}
	1	1	{2,3}
<i>Z</i> 3	-1	2	{2}
<i>Z</i> 4	10	5	{1,3}
<i>Z</i> 5	9	6	{1}
-5	_	7	{1, 2, 3}
<i>Z</i> 4	_5	8	{1, 2}

Subset-sum problem

- For all $I_1 \subseteq \{1, \ldots, n/2\}$, store I_1 in the bucket $L\left[\sum_{i \in I_1} z_i\right]$.
- For every $I_2 \subseteq \{n/2+1,\ldots,n\}$ do
 - Check whether the bucket $L\left[-\sum_{i\in I_2}z_i\right]$ is non-empty.

<i>z</i> ₁	6	i	<i>L</i> [<i>i</i>]	-
<i>z</i> ₂	2	-1	{3} {2,3}	
<i>Z</i> 3	-1	2	{2}	$-\sum_{i\in\{4\}}z_i=-10$
<i>Z</i> 4	10	5	{1,3}	21∈{4}
<i>Z</i> 5	9	6	{1}	
<i>Z</i> 4	-5	8	$\{1,2,3\}$ $\{1,2\}$	

Subset-sum problem

- For all $I_1 \subseteq \{1, \ldots, n/2\}$, store I_1 in the bucket $L\left[\sum_{i \in I_1} z_i\right]$.
- For every $I_2 \subseteq \{n/2+1,\ldots,n\}$ do
 - Check whether the bucket $L\left[-\sum_{i\in I_2}z_i\right]$ is non-empty.

<i>Z</i> ₁ <i>Z</i> ₂ <i>Z</i> ₃	6 2 -1	-1 1 2	L[i] {3} {2,3} {2}	$-\sum_{i\in\{4\}} z_i = -10$
Z ₄ Z ₅ Z ₄	10 9 -5	5 6 7 8	{1,3} {1} {1,2,3} {1,2}	$-\sum_{i\in\{4\}} z_i = -10 -\sum_{i\in\{5\}} z_i = -9$

Subset-sum problem

- For all $I_1 \subseteq \{1, \ldots, n/2\}$, store I_1 in the bucket $L\left[\sum_{i \in I_1} z_i\right]$.
- For every $I_2 \subseteq \{n/2+1,\ldots,n\}$ do
 - Check whether the bucket $L\left[-\sum_{i\in I_2}z_i\right]$ is non-empty.
 - If it is, output I_2 and a $I_1 \in L\left[-\sum_{i \in I_2} z_i\right]$.

6
2
-1
10
9
-5

1 2	[i] {3} {2,3} {2}	$-\sum_{i \in \{4\}} z_i = -10$ $-\sum_{i \in \{5\}} z_i = -9$
5 6	{1,3} {1}	$-\sum_{i\in\{6\}}^{i\in\{6\}} z_i = 5$
7	$\{1, 2, 3\}$	
8	{1,2}	

Subset-sum problem

Given $z_1, \ldots, z_n \in \mathbb{Z}$ Find $I \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in I} z_i = 0$.

- For all $I_1 \subseteq \{1, \ldots, n/2\}$, store I_1 in the bucket $L\left[\sum_{i \in I_1} z_i\right]$.
- For every $I_2 \subseteq \{n/2+1,\ldots,n\}$ do
 - Check whether the bucket $L\left[-\sum_{i\in I_2}z_i\right]$ is non-empty.
 - If it is, output I_2 and a $I_1 \in L\left[-\sum_{i \in I_2} z_i\right]$.

$$\begin{array}{c|cccc}
z_1 & 6 \\
z_2 & 2 \\
z_3 & -1 \\
\hline
z_4 & 10 \\
z_5 & 9 \\
z_6 & -5 \\
\end{array}$$

Output: $\{1,3\} \cup \{6\}$

MITM in the AJPS-cryptosystem

- Given $h \in R$, which is quotient of two elements of low Hamming wt.
- Find $f, g \in R$ with |f| = |g| = w such that h = f/g.

MITM in the AJPS-cryptosystem

- Given $h \in R$, which is quotient of two elements of low Hamming wt.
- Find $f, g \in R$ with |f| = |g| = w such that h = f/g.
- Split $g = g_1 + g_2$. (hg = f)

MITM in the AJPS-cryptosystem

- Given $h \in R$, which is quotient of two elements of low Hamming wt.
- Find $f, g \in R$ with |f| = |g| = w such that h = f/g.

• Split
$$g = g_1 + g_2$$
. $(hg = f)$

$$g = +$$

$$g_1$$

The Mersenne Low Hamming Ratio Problem

- Given $h \in R$, which is quotient of two elements of low Hamming wt.
- Find $f, g \in R$ with |f| = |g| = w such that h = f/g.
- Split $g = g_1 + g_2$. (hg = f)

The Mersenne Low Hamming Ratio Problem

- Given $h \in R$, which is quotient of two elements of low Hamming wt.
- Find $f, g \in R$ with |f| = |g| = w such that h = f/g.
- Split $g = g_1 + g_2$. (hg = f)
- Then $hg_1 = -hg_2 + f$

The Mersenne Low Hamming Ratio Problem

- Given $h \in R$, which is quotient of two elements of low Hamming wt.
- Find $f, g \in R$ with |f| = |g| = w such that h = f/g.
- Split $g = g_1 + g_2$. (hg = f)
- Then $hg_1 = -hg_2 + f$

• Heuristically, assume $-hg_2$ is random.

The Mersenne Low Hamming Ratio Problem

- Given $h \in R$, which is quotient of two elements of low Hamming wt.
- Find $f, g \in R$ with |f| = |g| = w such that h = f/g.
- Split $g = g_1 + g_2$. (hg = f)
- Then $hg_1 = -hg_2 + f$

- Heuristically, assume $-hg_2$ is random.
- Then $\Delta_{Hamm}(-hg_2, hg_1) \leq 2w + c\sqrt{w}$ with error probability $\leq e^{-c/8}$.

The Mersenne Low Hamming Ratio Problem

- Given $h \in R$, which is quotient of two elements of low Hamming wt.
- Find $f, g \in R$ with |f| = |g| = w such that h = f/g.
- Split $g = g_1 + g_2$. (hg = f)
- Then $hg_1 = -hg_2 + f$

- Heuristically, assume $-hg_2$ is random.
- Then $\Delta_{Hamm}(-hg_2, hg_1) \leq 2w + c\sqrt{w}$ with error probability $\leq e^{-c/8}$.
- Informally: $-hg_2 \approx hg_1$.

• Split a possible $g = g_1 + g_2$ in two parts, where $g_1 \in \{0, 1\}^{n/2} \times 0^{n/2}$ and $g_2 \in 0^{n/2} \times \{0, 1\}^{n/2}$.

$$g=$$
 $+$ g_2

- Split a possible $g = g_1 + g_2$ in two parts, where $g_1 \in \{0, 1\}^{n/2} \times 0^{n/2}$ and $g_2 \in 0^{n/2} \times \{0, 1\}^{n/2}$.
- For all g_1 , store $\{g_1\}$ into the bucket $L[hg_1]$.

nasii Table L.	
Key	Bucket
$ extit{h} extit{g}_1 o$	$\{g_1\}$
$ extit{h} g_1' ightarrow$	$\{g_1'\}$
:	:

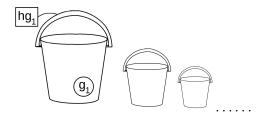
- Split a possible $g = g_1 + g_2$ in two parts, where $g_1 \in \{0,1\}^{n/2} \times 0^{n/2}$ and $g_2 \in 0^{n/2} \times \{0,1\}^{n/2}$.
- For all g_1 , store $\{g_1\}$ into the bucket $L[hg_1]$.
- For all g_2 , do

Hack Table 1.

Hash Table L:	
Key	Bucket
$ extit{hg}_1 ightarrow$	$\{g_1\}$
$ extit{hg}_1' ightarrow$	$\{g_1'\}$
:	:

- Split a possible $g = g_1 + g_2$ in two parts, where $g_1 \in \{0, 1\}^{n/2} \times 0^{n/2}$ and $g_2 \in 0^{n/2} \times \{0, 1\}^{n/2}$.
- For all g_1 , store $\{g_1\}$ into the bucket $L[hg_1]$.
- For all g2, do
 - Find $t \approx -hg_2$, such that L[t] is non-empty.

mash Table L:	
Key	Bucket
$ extit{h} extit{g}_1 o$	$\{g_1\}$
$ extit{hg}_1' ightarrow$	$\{g_1'\}$
:	:



- Split a possible $g = g_1 + g_2$ in two parts, where $g_1 \in \{0,1\}^{n/2} \times 0^{n/2}$ and $g_2 \in 0^{n/2} \times \{0,1\}^{n/2}$.
- For all g_1 , store $\{g_1\}$ into the bucket $L[hg_1]$.
- For all g_2 , do
 - Find $t \approx -hg_2$, such that L[t] is non-empty.
 - If such t exists, pick $g_1 \in L[t]$ and output $g_1 + g_2$.

Hash T	- а	ble	L:
Key		Bu	cke

I IUSII TUDIC L.		
Key	Bucket	
$ extit{h} extit{g}_1 o$	$\{g_1\}$	
$ extit{h} g_1' ightarrow extit{}$	$\{g_1'\}$	
:	:	

- Split a possible $g = g_1 + g_2$ in two parts, where $g_1 \in \{0, 1\}^{n/2} \times 0^{n/2}$ and $g_2 \in 0^{n/2} \times \{0, 1\}^{n/2}$.
- For all g_1 , store $\{g_1\}$ into the bucket $L[hg_1]$.
- For all g2, do
 - Find $t \approx -hg_2$, such that L[t] is non-empty.
 - If such t exists, pick $g_1 \in L[t]$ and output $g_1 + g_2$.

Hash Table L:

TIASIT TABIC L.	
Key	Bucket
$\textit{hg}_1 ightarrow$	$\{g_1\}$
$ extit{hg}_1' ightarrow$	$\{g_1'\}$
:	:

Problem: There are **many** $t \approx -hg_2$, and most of the buckets L[t] are empty

$$hg_1 = -hg_2 + f$$

$$hg_1 = -hg_2 + f$$

$$hg_1 = -hg_2 + f$$

Locality Sensitive Hashing

$$hg_1 = -hg_2 + f$$

$$hg_1 = -hg_2 + f$$

$$hg_1$$

Locality Sensitive Hashing

Construct the 'hash' function $\mathcal{H}: \{0,1\}^n \to \{0,1\}^k$, sending $b_n \cdots b_1 \mapsto b_{k+1} \cdots b_i$.

$$hg_1 = -hg_2 + f$$

$$-hg_2$$
 f
 hg_1

Locality Sensitive Hashing

Construct the 'hash' function $\mathcal{H}:\{0,1\}^n o \{0,1\}^k$, sending

$$b_n \cdots b_1 \mapsto b_{k+i} \cdots b_i$$
.

$$\mathcal{H}($$

$$\mathcal{H}($$

$$hg_1 = -hg_2 + f$$

$$hg_1 = -hg_2 + f$$

$$hg_1 = -hg_2 + f$$

Locality Sensitive Hashing

Construct the 'hash' function $\mathcal{H}: \{0,1\}^n \to \{0,1\}^k$, sending $b_n \cdots b_1 \mapsto b_{k+i} \cdots b_i$.

$$\mathcal{H}($$

$$\mathcal{H}($$

Hope: $\mathcal{H}(hg_1) = \mathcal{H}(-hg_2)$

• Split a possible $g = g_1 + g_2$ in two parts, where $g_1 \in \{0, 1\}^{n/2} \times 0^{n/2}$ and $g_2 \in 0^{n/2} \times \{0, 1\}^{n/2}$.

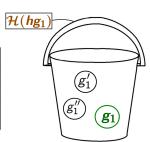
$$g=$$
 $+$ g_2

- Split a possible $g = g_1 + g_2$ in two parts, where $g_1 \in \{0, 1\}^{n/2} \times 0^{n/2}$ and $g_2 \in 0^{n/2} \times \{0, 1\}^{n/2}$.
- For all g_1 , $\{g_1\}$ into the bucket $L[\mathcal{H}(hg_1)]$.

TIASII TADIC	L.
Key	Bucket
$\mathcal{H}(extit{hg}_1) ightarrow$	$\{g_1',g_1'', \mathbf{g_1},\ldots\}$
$\mathcal{H}(\mathit{hg}_1''') ightarrow$	$\{g_1''',\ldots\}$
:	:

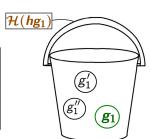
- Split a possible $g = g_1 + g_2$ in two parts, where $g_1 \in \{0, 1\}^{n/2} \times 0^{n/2}$ and $g_2 \in 0^{n/2} \times \{0, 1\}^{n/2}$.
- For all g_1 , $\{g_1\}$ into the bucket $L[\mathcal{H}(hg_1)]$.

Key	Bucket
$\mathcal{H}(extit{hg}_1) ightarrow$	$\{g_1',g_1'', g_1,\ldots\}$
$\mathcal{H}(\mathit{hg}_1''') ightarrow 0$	$\{g_1''',\ldots\}$
:	:



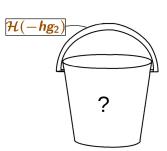
- Split a possible $g = g_1 + g_2$ in two parts, where $g_1 \in \{0, 1\}^{n/2} \times 0^{n/2}$ and $g_2 \in 0^{n/2} \times \{0, 1\}^{n/2}$.
- For all g_1 , $\{g_1\}$ into the bucket $L[\mathcal{H}(hg_1)]$.
- For all g_2 do

ilasii labic E.	
Key	Bucket
$\mathcal{H}(extit{hg}_1) ightarrow$	$\{g_1',g_1'', g_1,\ldots\}$
$\mathcal{H}(\mathit{hg}_1''') ightarrow 0$	$\{g_1''',\ldots\}$
:	:



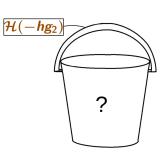
- Split a possible $g = g_1 + g_2$ in two parts, where $g_1 \in \{0, 1\}^{n/2} \times 0^{n/2}$ and $g_2 \in 0^{n/2} \times \{0, 1\}^{n/2}$.
- For all g_1 , $\{g_1\}$ into the bucket $L[\mathcal{H}(hg_1)]$.
- For all g2 do
 - Check whether $L[\mathcal{H}(-hg_2)]$ is non-empty.

riasii rabic L.	
Key	Bucket
$\mathcal{H}(extit{hg}_1) ightarrow$	$\{g_1',g_1'',\mathbf{g_1},\ldots\}$
$\mathcal{H}(\mathit{hg}_1''') ightarrow 0$	$\{g_1''',\ldots\}$
:	:



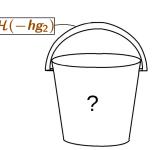
- Split a possible $g = g_1 + g_2$ in two parts, where $g_1 \in \{0, 1\}^{n/2} \times 0^{n/2}$ and $g_2 \in 0^{n/2} \times \{0, 1\}^{n/2}$.
- For all g_1 , $\{g_1\}$ into the bucket $L[\mathcal{H}(hg_1)]$.
- For all g_2 do
 - Check whether $L[\mathcal{H}(-hg_2)]$ is non-empty.
 - If so, then check if some $g_1 \in L[\mathcal{H}(-hg_2)]$ satisfies $|h(g_1 + g_2)| = w$.

Hasii Tabic	<u> </u>
Key	Bucket
$\mathcal{H}(extit{ extit{hg}}_1) ightarrow$	$\{g_1',g_1'', g_1,\ldots\}$
$\mathcal{H}(\mathit{hg}_1''') ightarrow$	$\{g_1''',\ldots\}$
:	:



- Split a possible $g = g_1 + g_2$ in two parts, where $g_1 \in \{0, 1\}^{n/2} \times 0^{n/2}$ and $g_2 \in 0^{n/2} \times \{0, 1\}^{n/2}$.
- For all g_1 , $\{g_1\}$ into the bucket $L[\mathcal{H}(hg_1)]$.
- For all g_2 do
 - Check whether $L[\mathcal{H}(-hg_2)]$ is non-empty.
 - If so, then check if some $g_1 \in L[\mathcal{H}(-hg_2)]$ satisfies $|h(g_1 + g_2)| = w$.
 - If so, output $g_1 + g_2$.

Hasii Tabic	L .
Key	Bucket
$\mathcal{H}(extit{ extit{hg}}_1) ightarrow$	$\{g_1',g_1'', g_1,\ldots\}$
$\mathcal{H}(\mathit{hg}_1''') ightarrow$	$\{g_1''',\ldots\}$
:	:



- Split a possible $g = g_1 + g_2$ in two parts, where $g_1 \in \{0, 1\}^{n/2} \times 0^{n/2}$ and $g_2 \in 0^{n/2} \times \{0, 1\}^{n/2}$.
- For all g_1 , $\{g_1\}$ into the bucket $L[\mathcal{H}(hg_1)]$.
- For all g_2 do
 - Check whether $L[\mathcal{H}(-hg_2)]$ is non-empty.
 - If so, then check if some $g_1 \in L[\mathcal{H}(-hg_2)]$ satisfies $|h(g_1 + g_2)| = w$.
 - If so, output $g_1 + g_2$.

Difficulties:

- Split a possible $g = g_1 + g_2$ in two parts, where $g_1 \in \{0, 1\}^{n/2} \times 0^{n/2}$ and $g_2 \in 0^{n/2} \times \{0, 1\}^{n/2}$.
- For all g_1 , $\{g_1\}$ into the bucket $L[\mathcal{H}(hg_1)]$.
- For all g_2 do
 - Check whether $L[\mathcal{H}(-hg_2)]$ is non-empty.
 - If so, then check if some $g_1 \in L[\mathcal{H}(-hg_2)]$ satisfies $|h(g_1 + g_2)| = w$.
 - If so, output $g_1 + g_2$.

Difficulties:

• 'false positives': non-close elements in the bucket

- Split a possible $g = g_1 + g_2$ in two parts, where $g_1 \in \{0, 1\}^{n/2} \times 0^{n/2}$ and $g_2 \in 0^{n/2} \times \{0, 1\}^{n/2}$.
- For all g_1 , $\{g_1\}$ into the bucket $L[\mathcal{H}(hg_1)]$.
- For all g_2 do
 - Check whether $L[\mathcal{H}(-hg_2)]$ is non-empty.
 - If so, then check if some $g_1 \in L[\mathcal{H}(-hg_2)]$ satisfies $|h(g_1 + g_2)| = w$.
 - If so, output $g_1 + g_2$.

Difficulties:

- 'false positives': non-close elements in the bucket
- 'false negatives': close element in 'wrong' bucket

- Split a possible $g = g_1 + g_2$ in two parts, where $g_1 \in \{0, 1\}^{n/2} \times 0^{n/2}$ and $g_2 \in 0^{n/2} \times \{0, 1\}^{n/2}$.
- For all g_1 , $\{g_1\}$ into the bucket $L[\mathcal{H}(hg_1)]$.
- For all g_2 do
 - Check whether $L[\mathcal{H}(-hg_2)]$ is non-empty.
 - If so, then check if some $g_1 \in L[\mathcal{H}(-hg_2)]$ satisfies $|h(g_1 + g_2)| = w$.
 - If so, output $g_1 + g_2$.

Difficulties:

- 'false positives': non-close elements in the bucket
- 'false negatives': close element in 'wrong' bucket

Solution: Choose the block size of \mathcal{H} to be $\log_2 \binom{n/2}{w/2}$. Repeat algorithm over randomized \mathcal{H} .

- Split a possible $g = g_1 + g_2$ in two parts, where $g_1 \in \{0, 1\}^{n/2} \times 0^{n/2}$ and $g_2 \in 0^{n/2} \times \{0, 1\}^{n/2}$.
- For all g_1 , $\{g_1\}$ into the bucket $L[\mathcal{H}(hg_1)]$.
- For all g_2 do
 - Check whether $L[\mathcal{H}(-hg_2)]$ is non-empty.
 - If so, then check if some $g_1 \in L[\mathcal{H}(-hg_2)]$ satisfies $|h(g_1 + g_2)| = w$.
 - If so, output $g_1 + g_2$.

Difficulties:

- 'false positives': non-close elements in the bucket
- 'false negatives': close element in 'wrong' bucket

Solution: Choose the block size of \mathcal{H} to be $\log_2{n/2 \choose w/2}$. Repeat algorithm over randomized \mathcal{H} . Using a combinatorial heuristic, this works.

- Split a possible $g = g_1 + g_2$ in two parts, where $g_1 \in \{0, 1\}^{n/2} \times 0^{n/2}$ and $g_2 \in 0^{n/2} \times \{0, 1\}^{n/2}$.
- For all g_1 , $\{g_1\}$ into the bucket $L[\mathcal{H}(hg_1)]$.
- For all g_2 do
 - Check whether $L[\mathcal{H}(-hg_2)]$ is non-empty.
 - If so, then check if some $g_1 \in L[\mathcal{H}(-hg_2)]$ satisfies $|h(g_1 + g_2)| = w$.
 - If so, output $g_1 + g_2$.

Difficulties:

- 'false positives': non-close elements in the bucket
- 'false negatives': close element in 'wrong' bucket

Solution: Choose the block size of \mathcal{H} to be $\log_2\binom{n/2}{w/2}$. Repeat algorithm over randomized \mathcal{H} . Using a combinatorial heuristic, this works.

This algorithm breaks the AJPS system in time $\binom{n/2}{w/2} \approx n^{\sqrt{n}/8}$

Attack	Authors	Running time	
		Classical	Quantum

Attack	Authors	Running time	
		Classical	Quantum
Brute force	AJPS	$n^{\frac{\sqrt{n}}{4}}$	$n^{\frac{\sqrt{n}}{8}}$

Attack	Authors	Running time	
		Classical	Quantum
Brute force	AJPS	$n^{\frac{\sqrt{n}}{4}}$	$n^{\frac{\sqrt{n}}{8}}$
Meet in the Middle	Our work	$n^{\frac{\sqrt{n}}{8}}$	$n^{\frac{\sqrt{n}}{12}}$

Attack	Authors	Running time	
		Classical	Quantum
Brute force	AJPS	$n^{\frac{\sqrt{n}}{4}}$	$n^{\frac{\sqrt{n}}{8}}$
Meet in the Middle	Our work	$n^{\frac{\sqrt{n}}{8}}$	$n^{\frac{\sqrt{n}}{12}}$
Lattice attack	BCGN	$2^{\sqrt{n}}$?	$2^{\sqrt{n}/2}$?

Attack	Authors	Running time	
		Classical	Quantum
Brute force	AJPS	$n^{\frac{\sqrt{n}}{4}}$	$n^{\frac{\sqrt{n}}{8}}$
Meet in the Middle	Our work	$n^{\frac{\sqrt{n}}{8}}$	$n^{\frac{\sqrt{n}}{12}}$
Lattice attack	BCGN	$2^{\sqrt{n}}$?	$2^{\sqrt{n}/2}$?
	Our analysis	$2.01^{\sqrt{n}}$	$2.01^{\sqrt{n}/2}$

 We analyzed the lattice attack of Beunardeau et al. over randomly chosen keys.

 We analyzed the lattice attack of Beunardeau et al. over randomly chosen keys.

Are there specific 'weak' keys for this lattice attack?

- We analyzed the lattice attack of Beunardeau et al. over randomly chosen keys.
 Are there specific 'weak' keys for this lattice attack?
- Aggarwal et al. improved their cryptosystem [AJPS17], allowing to encrypt more bits.

- We analyzed the lattice attack of Beunardeau et al. over randomly chosen keys.
 - Are there specific 'weak' keys for this lattice attack?
- Aggarwal et al. improved their cryptosystem [AJPS17], allowing to encrypt more bits.
 - What is the security of this improved system?

Main lesson

Main lesson

Collisions don't need to be exact to apply a Meet-in-the-Middle attack

References

D. Aggarwal et al. A New Public-Key Cryptosystem via Mersenne Numbers. Cryptology ePrint Archive, Report 2017/481. http://eprint.iacr.org/2017/481. 2017.

A. Ambainis. "Quantum Search with Variable Times". In: *Theory of Computing Systems* 47.3 (2010), pp. 786–807. ISSN: 1433-0490. DOI: 10.1007/s00224-009-9219-1.

M. Beunardeau et al. "On the Hardness of the Mersenne Low Hamming Ratio Assumption". In: *Progress in Cryptology – LATINCRYPT 2017*. Available at http://eprint.iacr.org/2017/522. 2017.

J. Hoffstein, J. Pipher, and J. H. Silverman. "NTRU: A ring-based public key cryptosystem". In: *International Algorithmic Number Theory Symposium*. Springer. 1998, pp. 267–288.