zviweb13 

 zvi

zviweb31

Dr. Zvi Rosen 
Assistant Professor
Science Building (SE43), Room 224
561-297-2484
rosenz@fau.edu 

Education:

Ph.D. University of California, Berkeley, 2015. Thesis: Algebraic Matroids in Applications.

Research Interests

My research focuses on the intersection of mathematical biology and applied algebra.
In particular, I think about how tools from algebraic geometry, commutative algebra,
and combinatorics can be applied to biological questions. I also work on either side of
this intersection: I study problems related to algebraic matroids and coordinate projections in other realms,
and I have computational biology projects in translation dynamics and gene regulatory networks.

  • Algebra keywords : algebraic matroids, structured polynomial systems, arrangements of convex sets.
  • Biology keywords : population genetics, single-cell transcriptomics, neural codes.

See my  profile  at Google Scholar ( https://scholar.google.com/citations?user=qgCXy4QAAAAJ&hl=en ) , or check the arXiv for my recent work
(https://arxiv.org/find/math/1/au:+Rosen_Z/0/1/0/all/0/1 ) . For a detailed description of current and future projects, please read my 
research statement .

Recent Publications

zviweb41

1. Algebraic signatures of convex and non-convex codes
 Carina Curto, Elizabeth Gross, Jack Jeffries, Katherine Morrison, Zvi Rosen, Anne Shiu, Nora Youngs
 To appear in Journal of Pure and Applied Algebra.

2. Geometry of the sample frequency spectrum and the perils of demographic inference. 
Zvi Rosen*, Anand Bhaskar*, Sebastien Roch, Yun S. Song
Genetics 209(4). genetics-300733. 2018.

3. What makes a neural code convex?
Carina Curto, Elizabeth Gross, Jack Jeffries, Katherine Morrison, Mohamed Omar, Zvi Rosen, Anne Shiu, and Nora Youngs                 
SIAM Journal on Applied Algebra and Geometry, 1(1), 222-238, 2017. 

4. The geometry of rank-one tensor completion
Thomas Kahle, Kaie Kubjas, Mario Kummer, Zvi Rosen
SIAM Journal on Applied Algebra and Geometry, 1(1), 200-221, 2017

5. Algebraic systems biology: a case study for the Wnt pathway.
Elizabeth Gross, Heather A. Harrington, Zvi Rosen,
Bernd SturmfelsBulletin of Mathematical Biology, 78, 21-51, 2016.

 

  

zvionwall