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Abstract—This work presents two explanatory mathematical
models explaining how network traffic features that display Gaus-
sian tendencies in single devices and small networks aggregate
to alpha-stable processes in larger networks. The first model
shows how self-similarity originates from an impulsive-noise-
based representation of individual processes. A second model
uses renewal processes to justify impulsive process aggregation
to alpha-stable or Gaussian end states and permits estimating
network traffic alpha-stable rates of convergence. We develop
a model based on this first method to empirically validate this
aggregation approach.

Index Terms—alpha-stable, computer network traffic model,
heavy-tail, self-similar

I. INTRODUCTION

We propose explanatory, complementary models for ag-
gregated network traffic, starting from the device level. Our
purpose is to understand how network traffic aggregates from
individual sources and investigate the tendency of certain
network traffic features including packet rate to trend towards
alpha-stable [1], [2] in larger networks, while the same features
exhibit non-parametric or Gaussian distributions in smaller
networks.

The central theme of our approach is an impulse-based
model of traffic from individual processes on a single device.
We observe that these traffic processes frequently are relatively
periodic and consistent in terms of volume, as illustrated
in Figure 1, a rate plot of traffic to a single, centrally-
managed device. The impulse characterization of traffic is
justified by the fact that even long transmissions (e.g., a video
on YouTube) are sent as short bursts of traffic rather than
constant-rate, lengthier transmissions.

Intuitively, the aggregation and perturbation of these traffic
impulses from hundreds of devices leads to the frequently-
observed self-similarity in aggregated network traces [3], [4].
These models have historically relied on Lévy processes {Xt :
t ≥ 0}, including Poisson and fractional Brownian motion
[5]; we propose an alternative Lévy process, the alpha-stable,
due to its deep theoretical connections with well-documented
characteristics of traffic. More specifically, Lévy processes
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are self-similar (SS) if and only if they are alpha-stable [6].
Moreover, the domain of attraction of stable variables consist
of random variables with heavy-tailed distributions per the
Generalized Central Limit Theorem (GCLT).

The primary contribution of this work is the development
of device traffic aggregation methods that can lead to alpha-
stable distributed traffic under certain input conditions, and
Gaussian-distributed traffic under other conditions.

II. THE IMPULSE MODEL

The goal of this model is to explain the aggregation of traffic
by looking inside the sub-windows where aggregations occur.
We define an impulse as a group of time stamps (packets)
within a sub-window that are related by a unique source and
destination IP pair (ip0, ip1). Different impulses are assumed
to be independent.

Impulses are ordered in such a way that P(Yi = a) does
not depend on i, where Yi is the volume of the ith impulse.
The total volume of traffic in a sub-window is given by
the sum of the impulses within it, the number of which is
described by a distribution E. V denotes the distribution of
the volumes of all impulses. Traffic in a generic sub-window
is given by S = Y1 + Y2 + ... + Ye, where e is sampled
from E. The Yi’s are assumed to be independent since they
represent the volume of different processes within a sub-
window and are also identically distributed by construction.
Their common distribution is approximated by V . We provide

Figure 1. Rate plot of several minutes of traffic received at local host with
periods of music and video streaming.U.S. Government work not protected by U.S. copyright



empirical evidence that V is well approximated by heavy-
tailed functions belonging to the domain of attraction of alpha-
stable distributions.

The asymptotic behavior of the aggregation S can now be
studied using the GCLT. Specifically, we can estimate the
convergence rate under the stronger assumption that Y1 lies
in the strong domain of attraction of a stable distribution [7].

The convergence rate serves to estimate the expected error
in the stable fits.

A. Aggregation from sub-windows to window

Intuitively, we think of a window as a set of consecutive
samples of sub-windows (typically between 600 and 1000).
The distribution of the aggregation of the random variables
defined above determines the outcome at randomly selected
sub-windows within a stationary trace.

When interpreted as a Bernoulli scheme the model inherits
the stronger condition of ergodicity, which implies that the dis-
tribution of a large enough window approximates the sample
distribution of the aggregation S.

Although the classical argument using moments is unavail-
able, we can justify this convergence using several other
methods. The property is also demonstrated empirically in a
longer work (in progress).

B. Aggregation using Renewal processes

We can also model traffic as the aggregation of renewal
processes per Taqqu and Lévy in [8]. Specifically, they look
at processes of the form

X∗(T,M) =

T∑
t=1

M∑
m=1

Xm,t (1)

where for each t, the random variables Xm,t : 1 ≤ m ≤M are
i.i.d. copies of a renewal process, and are interpreted as a set of
similar processes (say streaming from many different users),
whereas we interpret the index t as ranging across different
processes or network activities in the distribution sense.

The accumulation X∗(T,M) approaches Gaussian frac-
tional Brownian motion (GfBm) when T << M , and a stable
process when T >> M . See [8] for a quick note on how these
two SS processes differ. We can assume that a certain process
is identically distributed across devices if we restrict ourselves
to relatively short windows.

For a given k ≥ 0 we think of Wk as an independent
copy of the random variable of number of packets over time
with common distribution R, which we now assume to be
truncated (Wk are assumed to posses finite second moments).
Uk represents an independent copy of the packet flow duration
with distribution U ; similarly, Fk denotes the OFF period
duration with distribution F . The variables Fk are absent
in Taqqu and Levy’s considerations but it is clear that their
results are still applicable. Uk will be assumed to satisfy the
same conditions as in [8]; namely, they are i.i.d. and have
finite variance or belong to the domain of attraction of a
stable distribution with 1 ≤ α ≤ 2. These conditions are also
extended to Fk. In addition, Wk is independent of Uk and Fk.

Figure 2 shows how activity and inactivity periods are
shadowed by power-law distributions for a considerable period
of time; nevertheless, a sharp deviation from this trend is
clearly expected at some point.
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Figure 2. The probability distributions of packet flow duration and the
interruption periods between packet flows related to the same process.

A packet flow is a string of packets related by (ip0, ip1)
possibly extending several sub-windows (i.e a consecutive
group of impulses). Two packets belong to the same flow if
they are less than two sub-windows apart. We also define the
random variables Sk and Ek given by

Sk = S0 +

k−1∑
j=0

Uj +

k−1∑
j=0

Fj k ≥ 1

Ek = Sk + Uk k ≥ 0

(2)

representing the start-time and end-time of a packet flow
respectively. Ik = (Sk, Ek] denotes the kth ON interval.
Finally, we define the random variables

δk =

{
1 wk ∩ (

⋃
Ij) 6= ∅

0 otherwise

where wk refers to the kth sub-window in the trace.
A signal is now expressed as Xt =

∑∞
k=0Wkδk and we

interpret the expression
∑T

t=1Xt as the superposition of the
volume of several processes at a sub-window. The sum of M
i.i.d. copies of X(t) in a given sub-window suggests the traffic
of M ”similar” processes. We expect the relation T >> M to
be satisfied in large networks and in traces captured at busy
nodes due to the increased effect of noise associated with
the multi-tasking nature of devices using multiple network
sockets.

C. Simulations

These simple models capture some of the main properties
of real network traffic which depends on a great number of
hard to quantify factors by describing it in the following way:
Real Traffic(x1, ...)

d
= Toy Model1(V,E) + error1

d
= Toy Model2(R, T,M,U, F ) + error2



where both error1 and error2 go to zero asymptotically. Notice
that these models are very much related. We think of them in
terms of the relation:
Toy Model2(R, T,M,U, F )

d
= Toy Model1(V,E)+error(U,F ).

Model 2 is analogous to the M/G/∞ construction of Cox
[9], in the sense that similar conditions are assumed for the
ON/OFF durations. However, Model 2 does not require heavy-
tailed volumes or constant packet arrival rates.

At low aggregation levels the models are expected to be
inaccurate but the errors can be bounded by the use of
convergence rate estimates.

Figure 3. Gaussian (dotted line) and Stable (solid line) fits are shown above
for the distributions of packet count per 5 ms across randomly selected 5
second windows. The MAWI Apr, MAWI Nov, NPS, and WAND data sets
are shown in order of decreasing network size (listed from top to bottom).

In Figure 3, we observe that the small network WAND
trace appears Gaussian. This is intuitively satisfying, as the tail
decay parameter is estimated to be 2.40, and thus predicted
to converge to a Normal distribution by the GCLT. For
small residential networks, the variety of impulse volumes
T is sparse while the number of similar processes M is
comparably high; under this assumption T << M which
implies convergence to GfBm [8].

Errors can be large at low aggregation levels because the
fat tail is less likely to significantly affect the distribution,
(a window contains 1000 samples). As shown in Figure 4,
the error in terms of the Kolmogorov–Smirnov test improves
by almost an order of magnitude when the aggregation level
increases from 7 processes in the WAND trace to 212 in the
MAWI April trace. Moreover, Model 1 does not take into
account ON/OFF periods, which leads to greater errors for
small networks.

III. CONCLUSIONS

This work establishes conditions for the aggregation of net-
work traffic from individual device processes where features
of network traffic can tend to exhibit Gaussian characteristics
in small networks and alpha-stable characteristics in larger
networks. At many scales, process traffic can be characterized
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Figure 4. Solid lines indicate the CDFs of packet count per 5 ms across
randomly-chosen 5s windows for the MAWI APR, MAWI Nov, NPS, and
WAND data sets (listed from top to bottom). Dotted lines indicate the
simulated distributions, generated using observed volumes and 212, 167, 40,
and 7 impulses representing the observed mean number of processes.

as impulses defined by large variations in amplitude with small
ON- and large OFF-periods.

Simulations of the considered traces validate the two pro-
posed theoretical aggregation mechanisms. Alpha-stable dis-
tributed network traffic emerges at relatively low aggregation
levels.

Items for future work include both extending the breadth
of granularity of our aggregation models through considering
additional sources of traffic as well as developing alpha-stable
based methods of traffic measurement and anomaly detection.
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