
TRANSACTIONS OF THEAMERICAN MATHEMATICAL SOCIETYVolume 00, Number 0, Pages 000—000S 0002-9947(XX)0000-0ZERO SETS OF UNIVARIATE POLYNOMIALSROBERT S. LUBARSKY AND FRED RICHMANAbstract. Let L be the zero set of a nonconstant monic polynomial with com-plex coefficients. In the context of constructive mathematics without countablechoice, it may not be possible to construct an element of L. In this paper weintroduce a notion of distance from a point to a subset, more general than theusual one, that allows us to measure distances to subsets like L. To verify thecorrectness of this notion, we show that the zero set of a polynomial cannot beempty–a weak fundamental theorem of algebra. We also show that the zerosets of two polynomials are a positive distance from each other if and only ifthe polynomials are comaximal. Finally, the zero set of a polynomial is usedto construct a separable Riesz space, in which every element is normable, thathas no Riesz homomorphism into the real numbers.1. QuasidistanceLet T be a set of real numbers. A lower bound for T is a real number b suchthat b ≤ t for all t in T . By the infimum of T we mean, as usual, a lower boundinf T for T such that if inf T < r, then there exists t ∈ T such that t < r. Thenumber supT is defined dually. By the greatest lower bound of T we meanthe largest element, glbT , of the set B of lower bounds of T . As the distinctionbetween inf T and glbT in constructive mathematics is central to this section, wepause to illustrate this difference.Example 1.1. Let P be an arbitrary proposition and letL = {0 : P or ¬P} ∪ {1} .Then the set B of lower bounds of L is (−∞, 0]. Thus glbL = 0, but if inf L exists,then P or ¬P .Proof. Elements of (−∞, 0] are certainly lower bounds of L. Conversely, if b > 0,then b cannot be a lower bound of L, because if 0 were not in L, then P would haveto be false, so ¬P would be true, so 0 would be in L. So elements of B cannot be(strictly) positive, whence they are in (−∞, 0].Finally, if m = inf L, then m ≤ 0 so 1 > m whence there exists r < 1 in L. Fromthis P or ¬P follows. �So the notions of infimum and greatest lower bound are the same only in thepresence of the law of excluded middle. The relations that hold between the twonotions are stated in the following theorem.2000 Mathematics Subject Classification. Primary 03F65, 13A99.c©XXXX American Mathematical Society1



2 ROBERT S. LUBARSKY AND FRED RICHMANTheorem 1.2. Let T be a set of real numbers that is bounded below, and B theset of lower bounds for T . If supB exists, then glbT = supB. If inf T exists, thenglbT = inf T .Proof. Suppose supB exists. We must show that it is in B, that is, that t ≥ supBfor all t in T . But t ≥ b for each b in B, so t ≥ supB. (If t < supB, then therewould be b ∈ B such that t < b.)Suppose inf T exists. We must show that it is the maximum element of B. It isin B by definition. If b ∈ B and b > inf T , then there exists t in T such that t < b,a contradiction, so b ≤ inf T . �The usual informal description of a located subset L of a metric space M is thatwe can compute the distance from any point inM to L. This is slightly misleadingbecause the rules for computing the distance are not explicitly stated. It is notenough to be able to compute the distance from x to L, we must compute theinfimum infy∈Ld (x, y)Thus there are some implied constructions of elements of L hidden in that statementabout computing distances. That is not the case for the greatest lower boundglby∈Ld (x, y)which is also a candidate for the distance from x to L.To illustrate this distinction, letM be the real line and L the subset of Example1.1. The subset L contains an element, is closed, and glby∈L d (−1, y) = 1+glbL =1. However, infy∈L d (−1, y) = 1 + inf L, but L does not have an infimum.If L is a subset of a metric space M , and x is a point in M , then the distancefrom x to L is d (x, L) = infy∈L d (x, y)We define the quasidistance from x to L to beδ (x, L) = glby∈Ld (x, y)We say that L is located if d (x, L) exists for each x in M , and that L is quasilo-cated if δ (x, L) exists for each x inM . It follows from Theorem 1.2 that a locatedset L is quasilocated with δ (x, L) = d (x, L) for all x. Note that a quasilocated setcannot be empty.Theorem 1.3. If L is a quasilocated subset of a metric space M , then δ (x, L) ≤δ (y, L)+ d (x, y) for all x and y in M . It follows that |δ (x, L)− δ (y, L)| ≤ d (x, y)so δ (x, L) is a uniformly continuous function of x.Proof. It suffices to show that δ (x, L) − d (x, y) ≤ d (y, t) for all t ∈ L. Butd (x, t) ≤ d (x, y) + d (y, t), and δ (x, L) ≤ d (x, t). �If we think of δ (x, L) as a lowercut (a supremum of a bounded set of real numbers),see [4], then the inequality δ (x, L) ≤ δ (y, L)+d (x, y) holds for an arbitrary subsetL of M .



ZERO SETS OF UNIVARIATE POLYNOMIALS 3The quasidistance can be thought of as dual to the distance. That’s because wecan express the distance from x to L asd (x, L) = inf {d (x, t) : t ∈ L} = inf {r : d (x, t) ≤ r for some t in L}while the quasidistance isδ (x, L) = sup {r : d (x, t) ≥ r for all t in L}Throughout, we will use Br (x) to denote the open ball of radius r centered atx.Lemma 1.4. Let L be a subset of a metric space M and x ∈M . Then r is a lowerbound for {d (x, y) : y ∈ L} if and only if Br (x) ∩ L = ∅.Proof. Consider the statement P that there exists y ∈ L such that d (x, y) < r.Then ¬P says d (x, y) ≥ r for all y ∈ L, that is, that r is a lower bound for{d (x, y) : y ∈ L}. On the other hand, ¬P says that Br (x) ∩ L = ∅. �Theorem 1.5. If δ (x, L) exists, then δ (x, L) ≤ r if and only if Bs (x) ∩ L cannotbe empty for any s > r.Proof. Suppose δ (x, L) = glby∈L d (x, y) ≤ r. If Bs (x) ∩ L were empty for s > r,then s would be a lower bound for {d (x, y) : y ∈ L}, a contradiction. Conversely,suppose Bs (x) ∩ L cannot be empty for any s > r. If δ (x, L) > r, then Bs (x) ∩ Lis empty for s = (δ (x, L) + r) /2, a contradiction. �We really aren’t particularly interested in Example 1.1. What motivated theseideas was the study, in a choiceless environment, of the set L of roots of a monicpolynomial p with complex coefficients. If the coefficients of p are complex numbersover the Cauchy reals, then we can write p (X) = (X − r1) · · · (X − rn), see [5], andL is the closure of the set {r1, . . . , rn}, so L is easily seen to be located. However,if the coefficients are arbitrary complex numbers, then we need not be able toconstruct a root of p, see [3], even if p is of the form X2− a, so we can’t show thatL is located. However, L is always quasilocated, as we will see (Corollary 4.6).In the presence of choice, at least in complete spaces M where balls are totallybounded (such as Euclidean spaces), quasilocated zero sets are located. To see thatsome hypothesis on M is necessary to get this conclusion, take L as in Example1.1, and M = {−1} ∪ L. Then L is the zero set of the function x (x− 1) on M .Theorem 1.6. Let M be a complete space in which balls are totally bounded. As-suming the axiom of dependent choices, quasilocated zero sets of uniformly contin-uous functions on M are located.Proof. Suppose L is a quasilocated subset of M and x ∈ M . We will show thatif δ (x, L) < r, and ε > 0, then there exists t ∈ L such that d (x, t) ≤ r + ε. Theproof is reminiscent of the proof of the Baire category theorem. First we constructan element y1 ∈ Br (x) such that δ (y1, L) < ε/2. This is possible because thefunction δ (z, L) is uniformly continuous, so has an infimum m as z ranges overBr (x). Either m > 0 or m < ε/2. But if m > 0, then δ (x,L) ≥ r, so m < ε/2.Similarly we construct an element y2 ∈ Bε/2 (y1) such that δ (y2, L) < ε/4.Then an element y3 ∈ Bε/4 (y2) such that δ (y3, L) < ε/8. In general, we constructyn+1 ∈ Bε/2n (yn) such that δ (yn+1, L) < ε/2n+1. Dependent choice allows us toform a sequence y1, y2, . . . with those properties.



4 ROBERT S. LUBARSKY AND FRED RICHMANBecause yn+1 ∈ Bε/2n (yn), the sequence of y’s is a Cauchy sequence, henceconverges to a point t in M . As δ (yn, L) converges to zero, δ (t, L) = 0. As L is azero set of a uniformly continuous function, t ∈ L. Finally d (x, yn) < r + ε for alln, so d (x, t) ≤ r + ε. �With a little work, the proof of this theorem can be modified to apply to anylocally compact space M .In Example 1.1, the quasidistance from the point 0 to the closed set L is equal tozero but 0 need not be in L. That can’t happen if L is the zero set of a continuousfunction. We write this as a lemma for later use.Lemma 1.7. Let f be a continuous function that vanishes on L. If δ (x, L) = 0,then f (x) = 0.Proof. It’s enough to show that f (x) cannot be different from 0. Suppose |f (x)| =ε > 0. As f is continuous at x, there is θ > 0 such that f is nonzero in Bθ (x).Lemma 1.4 then tells us that δ (x,L) ≥ θ, a contradiction. �2. Quasifinite setsEven with choice, the zero set of a monic polynomial need not be finite or evenfinitely enumerable. For example, let a and b are two real numbers and consider thepolynomial p (X) = (X − a) (X − b). In addition to the roots a and b, the numbersa∨ b and a∧ b are roots, and the ability to equate a∨ b with either a or b is a formof LLPO. What we can say is that the zero set of p (X) is the closure of the set{a, b}. So what we are thinking of here, in the presence of choice, are closures offinitely enumerable sets.What are we thinking of in the absence of choice? The example to keep in mindis the zero set L of the polynomial X2 − a where a is a small complex number,possibly zero. Unless there is a sequence of Gaussian numbers converging to a, see[5], we cannot necessarily construct an element of L, see [3]. But L is quasilocated,as we shall see. First a little terminology.An ε-quasiapproximation to a subset L of a metric space M is a sequencex1, . . . , xn in M such that Bε (xi) ∩ L cannot be empty for i = 1, . . . , n, and L ⊂Bε (x1)∪ · · · ∪Bε (xn). We say that L is quasi-totally-bounded if for each ε > 0we can find an ε-quasiapproximation to L. Unlike the notion of totally bounded,this depends on the ambient space M because we cannot assume that the ε-quasi-approximation lies in L. The subset L in Example 1.1 is quasi-totally-bounded butwe can’t find an internal 1-quasiapproximation to it.Theorem 2.1. Each quasi-totally-bounded subset of a metric space M is quasi-located.Proof. Let L be a quasi-totally-bounded subset ofM . For any ε > 0, let x1, . . . , xnbe an ε-quasiapproximation to L. First we show, for each z in M , that r =d (z, {x1, . . . , xn}) − ε is a lower bound for T = {d (z, y) : y ∈ L}. Given y in Lthere is i such that d (xi, y) < ε, so d (z, xi) ≤ d (z, y)+d (y, xi) < d (z, y)+ε. Thusr + ε ≤ d (z, xi) < d (z, y) + εso r < d (z, y). Next we show that r+3ε is not a lower bound for T . We know thatd (z, xi) < r+2ε for some i, so Bε (xi) ⊂ Br+3ε (z). We also know that Bε (xi)∩L



ZERO SETS OF UNIVARIATE POLYNOMIALS 5cannot be empty, so Br+3ε (z) ∩ L cannot be empty, whence r + 3ε is not a lowerbound for T . Thus we can approximate δ (z, L) within 3ε/2. �We say that L is a quasi-n-set if for each ε > 0 there is an ε-quasiapproximationto L of length n. Note that a singleton is a quasi-n-set for every positive n, so nis just an upper bound on the size of L rather than its size. We say that L isquasifinite if it is a quasi-n-set for some n. Clearly a quasifinite set is quasi-totally-bounded.The meaning of δ (x, L) < t, when δ (x, L) does not necessarily exist, followsfrom the general theory of lowercuts. It is the second condition in the followinglemma.Lemma 2.2. If δ (x, L) exists, then δ (x, L) < t if and only if Br (x)∩L cannot beempty for some r < t.Proof. We know that r ≤ δ (x, L) if and only if Br (x)∩L is empty (Lemma 1.4), soif δ (x, L) < t, then Br (x)∩L cannot be empty for r = (δ (x, L) + t) /2. Conversely,if Br (x) ∩ L cannot be empty for some r < t, then r ≤ δ (x, L) is impossible, soδ (x, L) < t. �We will show, in Corollary 4.6, that the zero set of a monic polynomial is quasifi-nite. 3. The spectrum of a polynomialLet f be a monic polynomial of degree n ≥ 1 with complex coefficients. We canapproximate f arbitrarily closely with polynomials of the form(X − q1) (X − q2) · · · (X − qn)where the qi are Gaussian numbers. The spectrum of f , written spec f , is anelement of the completion of the set of n-multisets of Gaussian numbers in anappropriate metric, see [3]. Classically, spec f can be identified with the multiset ofroots of f . Constructively, with choice, spec f can be identified with an equivalenceclass of multisets r1, . . . , rn where two multisets are equivalent if ∏ni=1 (X − ri) =∏ni=1 (X − r′i).The choiceless fundamental theorem of algebra says that the function spec is ahomeomorphism from the space of monic polynomials of degree n, with the naturalmetric, to the completion of the set of n-multisets of Gaussian numbers.The distance, d (z, spec f), from a complex number z to spec f is approx-imated by the distance from z to the approximating multisets {q1, q2, . . . , qn}.Note that d (z, spec f) is independent of multiplicities. It is not hard to show thatd (z, spec f) = 0 if and only if f (z) = 0. That is the connection between spec f andthe zero set of f .The diameter of spec f is the limit of the the diameters of its approximatingn-multisets. Caution: this need not be a limit of a sequence of approximating n-multisets–we are operating in the absence of countable choice. The diameter canbe characterized in terms of d (z, spec f) asinfε>0 sup {|z − z′| : d (z, spec f) < ε and d (z′, spec f) < ε}



6 ROBERT S. LUBARSKY AND FRED RICHMANThe (set-)distance between spec f and spec g is defined to be the infimum overall z of d (z, spec f) + d (z, spec g) .It is not hard to see that this infimum exists, and is equal to the limit of the distancebetween the approximations to spec f and spec g. This is like the distance betweentwo sets of complex numbers. It is not a metric and should not be confused with themetric distance between the spectra of two monic polynomials of the same degreethat comes from their both being in the completion of the set of n-multisets ofGaussian numbers.We will need this lemma.Lemma 3.1. Let f be a monic polynomial of degree n ≥ 1 with complex coefficients.If the diameter of spec f is positive, then f = gh for nonconstant polynomials gand h. Moreover, the distance between spec g and spech is positive.Proof. Let d be the diameter of spec f and let r be a rational number such thatd ≥ r > 0. Let q1, . . . , qn be Gaussian numbers that approximate the spectrum of fto within r/ (8n). The transitive closure of the relation |x− y| ≤ r/ (2n) partitionsthe qi into at least two equivalence classes (thought of as multisets). Let G0 be oneof them and H0 the union of all the rest. The minimum distance ε between a pointin G0 and a point in H0 is greater than r/ (2n).Let m be the number of elements of G0, including multiplicities. Any multisetof Gaussian numbers that approximates the spectrum of f to within r/ (8n) isuniquely the union of an m-multiset G and an (m− n)-multiset H, where G iswithin r/ (4n) of G0, as m-multisets, and H is within r/ (4n)of H0. So the distancebetween any point in G and any point in H is at least ε − r/ (2n). Let g and hbe the monic polynomials whose spectra are the limits of the multisets G and Hrespectively. That is, g is the limit of the polynomials Πs∈G (X − s). The distancebetween spec g and spech is at least ε− r/ (2n). �Any easy induction gives us the theorem.Theorem 3.2. Let f be a monic polynomial of degree n ≥ 1 with complex coef-ficients. For each ε > 0 we can write f = g1g2 · · · gk where the diameter of eachspec gi is less than ε and the spec gi are a positive distance from each other.Proof. If the diameter d of spec f is less than ε, then let k = 1 and g1 = f . Other-wise d > 0 and from Lemma 3.1 we can write f = gh for nonconstant polynomialsg and h. By induction on degree we can write g and h in the desired form. Clearlythe spectrum of any factor of g is a positive distance from the spectrum of anyfactor of h. �4. Weak fundamental theorem of algebraWe want to show that the zero set L of a monic polynomial p is quasilocated. Weknow that the quasidistance from z to L has to be r = d (z, spec p). But to provethat, we must show that it is impossible for Br+ε (z) ∩ L to be empty for ε > 0(Lemma 1.4). In particular, we must show that it is impossible for the zero set of amonic polynomial of degree at least 1 over the complex numbers to be empty–theweak fundemental theorem of algebra.



ZERO SETS OF UNIVARIATE POLYNOMIALS 7Suppose we have two polynomialsa = amXm + am−1Xm−1 + · · ·+ a1X + a0b = bnXn + bn−1Xn−1 + · · ·+ b1X + b0with coefficients in a commutative ring R. The so-called pseudodivision algo-rithm, which is proved in essentially the same way as the division algorithm formonic polynomials, says that if 0 < m ≤ n, then we can find canonical q and r,with deg r < m, such that an−m+1m b = qa+ rWe will denote the remainder r by ρ (b, a) and we say that ρ (b, a) is the result ofremaindering b by a.The coefficients of q and r can be written as polynomials in the coefficients of aand b. The computation really takes place in the polynomial ringZ [αm, . . . , α0, βn, . . . , β0] [X]where the α’s and β’s are indeterminates, so we might as well assume that R isdiscrete. Note that ρ (b, a) is defined only when 0 ≤ deg a < deg b.Let R be a discrete commutative ring. If a is any nonzero polynomial in R [X],then γ (a) is defined to be the result of deleting the leading term of a. We say thatγ (a) is the chop of a. Set γ (0) = 0.If A and B are subsets of R [X], then rem (A,B) is defined to be{p ∈ R [X] : p = ρ (a, b) or p = ρ (b, a) for some (a, b) ∈ A×B}and chop (A) is defined to be {γ (a) : a ∈ A}. We say that A is closed underchopping and remaindering if rem (A,A) ⊂ A and chop (A) ⊂ A.Lemma 4.1. Given a finite set S of polynomials over a discrete commutative ring,there is a finite set of polynomials containing S that is closed under chopping andremaindering.Proof. Define S0 to be S. Let n be a bound on the degrees of the polynomials inS0. For i > 0, defineSi = Si−1 ∪ chop (Si−1) ∪ rem (Si−1, Si−1)We will show that, for i ≥ 1, the elements of Si \ Si−1 have degree at most n− i.That’s clearly true for i = 1, and if i > 1, and p ∈ Si \ Si−1, thenp ∈ chop (Si−1 \ Si−2) ∪ rem (Si−1, Si−1 \ Si−2)whence, by induction on i, we have deg p < n−(i− 1) so deg p ≤ n−i. In particular,the elements of Sn \ Sn−1 have degree at most 0, so Sn is closed under choppingand remaindering. �Apply Lemma 4.1 to the set S of two polynomialsαmXm + αm−1Xm−1 + · · ·+ α1X + α0βnXn + βn−1Xn−1 + · · ·+ β1X + β0over the ring Z [αm, . . . , α0, βn, . . . , β0], where the α’s and β’s are indeterminates.Let L be the set of leading coefficients of polynomials in S′. The elements of L are



8 ROBERT S. LUBARSKY AND FRED RICHMANin Z [αm, . . . , α0, βn, . . . , β0]. If we are then given two polynomialsa = amXm + am−1Xm−1 + · · ·+ a1X + a0b = bnXn + bn−1Xn−1 + · · ·+ b1X + b0with coefficients in an arbitrary commutative ring R, we can form the subset L (a, b)of R obtained by plugging ai and bj for αi and βj in the elements of L. We arenow ready to prove a general Bezout’s equation for polynomials over an arbitrarycommutative ring.Theorem 4.2. Leta = amXm + am−1Xm−1 + · · ·+ a1X + a0b = bnXn + bn−1Xn−1 + · · ·+ b1X + b0be polynomials over a commutative ring R. If each of the elements of L (a, b) iseither 0 or invertible, then there exist s and t in R [X] such that sa + tb dividesboth a and b and is either monic or 0.Proof. We attempt to execute the Euclidean algorithm on a and b. This will succeedif, each time we create a new remainder, we can write it as a polynomial withan invertible leading coefficient. But that is exactly what the hypothesis of thetheorem allows us to do. The elements of L (a, b) include all the coefficients of aand b and anything we might get by repeatedly applying the division algorithm.Unless a = b = 0, the last nonzero remainder from the algorithm is of the formsa+ tb and divides both a and b. We can divide by its leading coefficient to makeit monic. �As an immediate corollary we getCorollary 4.3. Let R be a ring in which any noninvertible element is zero. If aand b are two polynomials in R [X] then we can construct propositions P1, . . . , Pksuch that if the conjunction(P1 ∨ ¬P1) ∧ (P2 ∨ ¬P2) ∧ · · · ∧ (Pk ∨ ¬Pk)of instances of the law of excluded middle holds, then there exist s and t in R [X]such that sa+ tb divides both a and b and is either monic or 0.The complex numbers are such a ring, as is any Heyting field. Why do we wantCorollary 4.3? The relevant intuitionistic tautology is that the negation of(P1 ∨ ¬P1) ∧ (P2 ∨ ¬P2) ∧ · · · ∧ (Pk ∨ ¬Pk) ∧Aimplies ¬A. That is easy to see by induction from the case k = 1. For k = 1,suppose A and ¬ ((P1 ∨ ¬P1) ∧A). If P1 is true, then we get a contradiction, soP1 is false, and we get a contradiction. So if we want to prove ¬A, we are allowedto assume any finite number of instances of the law of excluded middle. Theproposition A that we are interested in refuting is that a given monic polynomialwith complex coefficients has no root. That refutation is the weak fundamentaltheorem of algebra.First we prove the fundamental theorem of algebra for strongly separable poly-nomials.



ZERO SETS OF UNIVARIATE POLYNOMIALS 9Theorem 4.4. Let f be a monic polynomial with complex coefficients. Suppose thatthere exist polynomials s and t such that sf+tf ′ = 1. Then f = (X − r1) · · · (X − rn)where the ri are distinct complex numbers.Proof. From [3] we can find algebraic numbers q1, . . . , qn that approximate thespectrum of f arbitrarily closely. That means thatg = (X − q1) · · · (X − qn)is arbitrarily close to f , and that given another close approximation q′1, . . . , q′n tothe spectrum of f , we can reindex it so that q′i is close to qi for each i. In particular,the numbers f (qi) can be made arbitrarily small so the numbers f ′ (qi) are boundedaway from 0 because of the equation sf + tf ′ = 1. Differentiation of polynomialsis continuous, so f ′ (q1) is close tog′ (q1) = (q1 − q2) (q1 − q3) · · · (q1 − qn) .Hence q1 is bounded away from q2, . . . , qn, and similarly for the rest of the q’s.Thus we can find n discs, D1, . . . , Dn, bounded away from each other, so that anysufficiently close approximation to the spectrum of f has one point in each of thediscs. The points in Di, as we range over approximations to the spectrum, forma coherent system of approximations, hence determine a unique complex numberri because the complex numbers are complete in this choiceless sense. Clearly fvanishes on each ri, so f can be written as desired. �Now we can prove the weak fundamental theorem of algebra for arbitrary monicpolynomials.Theorem 4.5 (Weak fundamental theorem of algebra). Let f be a nonconstantmonic polynomial with complex coefficients. Then the assumption that f has noroots leads to a contradiction.Proof. We apply Corollary 4.3 to the polynomial f and its derivative f ′. Assumef has no roots. We will derive a contradiction from that and the existence ofpolynomials s and t in C [X] such that d = sf + tf ′ is a monic polynomial thatdivides both f and f ′. As f ′ is a nonzero polynomial of degree less than f , thepolynomial d is either 1 or a monic nonconstant proper divisor of f . In the lattercase, we can replace f by d and we are done by induction on the degree as d cannothave roots (if deg f = 1, then f has a root). So we may assume thatsf + tf ′ = 1.But then Theorem 4.4 says that f has a root. �The following corollary is the point of this whole exercise.Corollary 4.6. Let f be a nonconstant monic polynomial with complex coeffi-cients, Z the zero set of f , and z a complex number. If d (z, spec f) = r, and ε > 0,then the assumption that f has no roots in the disc of radius r + ε around z leadsto a contradiction. Thus d (z, spec f) = δ (z, Z) so Z is quasilocated. In fact, Z isquasifinite.Proof. Write f = g1g2 · · · gk where the diameter of each spec gi is less than ε. Asr = infi d (z, spec gi), there is i such that the diameter of gi plus d (z, spec gi) is



10 ROBERT S. LUBARSKY AND FRED RICHMANless than r + ε. That requires that gi has no roots (anywhere), which leads to acontradiction by Theorem 4.5.To show that Z is quasifinite, we have to find, for each ε > 0, an ε-quasi-approximation to Z of length n. An ε-quasi-approximation to Z is given by theroot set r1, . . . , rn of a polynomial over the Gaussian numbers that is close to f . Toshow that it is an ε-quasi-approximation, we need to show that Bε (ri) ∩Z cannotbe empty for i = 1, . . . , n, and Z ⊂ Bε (r1)∪· · ·∪Bε (rn). The first condition meansthat δ (ri, Z) < ε. But δ (ri, Z) = d (ri, spec f) which we can make arbitrarily small.For the second condition, if z ∈ Z, so f (z) = 0, then z is close to one of the ribecause if the polynomial f is close to (X − r1) · · · (X − rn), and f (z) = 0, then zis close to one of the ri. �5. Comaximal polynomials and resultantsWe would like to prove that, for monic polynomials a and b over C, that thedistance between speca and spec b is positive if and only if there are polynomialss and t such that sa + tb = 1. To do this, we will show that if the distance fromspeca to spec b is positive, then the resultant of a and b is different from zero. Thenwe will apply a theorem valid for arbitrary commutative rings (Theorem 5.1) thatwill construct the polynomials s and t.The resultant of a and b (not necessarily monic) is the determinant of theirSylvester matrix. Here is the Sylvester matrix for a = a3X3 + a2X2 + a1X + a0and b = b5X5 + · · ·+ b1X + b0S = 
a3 a2 a1 a0 0 0 0 00 a3 a2 a1 a0 0 0 00 0 a3 a2 a1 a0 0 00 0 0 a3 a2 a1 a0 00 0 0 0 a3 a2 a1 a0b5 b4 b3 b2 b1 b0 0 00 b5 b4 b3 b2 b1 b0 00 0 b5 b4 b3 b2 b1 b0

If a =∏mi=1 (X − qi) and b =∏nj=1 (X − rj), then the determinant of S is∏i,j (qi − rj).That fact is a simply a polynomial identity in the indeterminants qi and rj.We say that two elements a and b a ring are comaximal if there exist s and tin the ring such that sa+ tb = 1.Theorem 5.1. Let a = amXm+am−1Xm−1+· · ·+a0 and b = bnXn+bn−1Xn−1+· · ·+ a0 be polynomials in R [X] with m,n ≥ 1. Then the following two conditionsare equivalent:(1) The polynomials a and b are comaximal in R [X] and the (formal) leadingcoefficients am and bn are comaximal in R,(2) The resultant of a and b is a unit in R.Proof. If S is the Sylvester matrix of a and b, and S∗ is the adjugate of S, thenS∗S = (detS) I, where I is the identity matrix and detS is the resultant of a and b.So the last row of S∗ gives the coefficients of polynomials s and t such that sa+ tbis the resultant of a and b. Thus if condition 2 holds, then the polynomials a andb are comaximal in R [X]. It remains to show that am and bn are comaximal in



ZERO SETS OF UNIVARIATE POLYNOMIALS 11R. But that follows by expanding the determinant of S by minors using the firstcolumn.Now suppose condition 1 holds, so there exist polynomials s and t such thatsa+ tb = 1. We will first prove 2 under the assumption that am (or bn) is a unit.Now if g is any polynomial of degree less than m+ n, then we can certainly findpolynomials s and t such that sa+ tb = g. As am is unit, we can write t = qa+ rwhere deg r < m. So (s+ qb)a+ rb = gwhich means we may assume that deg t < m, so deg tb < m + n. This forcesdeg s < n because if sk is the (formal) leading coefficient of s, and k ≥ n, then theequation sa + tb = g requires sk = 0 as deg tb < m + n. Because deg s < n anddeg t < m, we can put the coefficients of s and t together to form a row vector v oflength m + n so that vS = (gm+n−1, gm+n−2, . . . , g1, g0) where S is the Sylvestermatrix. Since we can do this for arbitrary g of degree less than m+ n, this showsthat the matrix S is invertible, whence detS, which is the resultant of a and b, isa unit in R.To finish the proof, we pass to the rings R [1/am] and R [1/bn]. The kernel of thenatural map R→ R [1/am] is the set of elements of R that annihilate some powerof am. In particular, R [1/am] is trivial exactly when am is nilpotent. Now sincethe theorem is true when either am or bn is a unit, it follows that detS is a unit inR [1/am] and in R [1/bn]. We want to show that detS is a unit in R. That followsfrom the fact that am and bn are comaximal. Specifically, we have (detS) r/akm = 1in R [1/am] for some r ∈ R and positive integer k, so (detS) raim = ak+im in Rfor some positive integer i. Thus detS divides a power of am in R. Similarly,detS divides a power of bn. That makes detS a unit because any power of am iscomaximal with any power of bn. �It’s not enough in Theorem 5.1 just to require that a and b be comaximal. Atrivial example is a = b = 0X + 1 where m = n = 1.Over a discrete field, Theorem 5.1 is often stated as the resultant of a and bis zero if and only if a and b have a nontrivial common factor, it being assumedthat nobody is so silly as to have the formal leading coefficient of a and b equal tozero. The theorem in this form, even for monic a and b, does not generalize well toarbitrary commutative rings.Consider the polynomials (X − 2) (X − 6) = X2 + 4 and X (X − 4) over Z8.It is easily checked that their resultant is zero. However, they have no nontrivialcommon factors. It’s easy to see that they have no nontrivial monic commonfactors. What constitutes a trivial common factor? It seems clear that these areexactly the unit polynomials, the polynomials with inverses. Over a decent ring,the units in R [X] are just the units of R, but in a ring with nilpotent elements,like Z8, there are units of arbitrarily high degree, like 4Xn + 1.We will show that over Z8, or any primary ring, the factors of a monic polynomialare all products of a unit polynomial and a monic polynomial. Thus if a monicpolynomial has a nontrivial factor, then it has a nontrivial monic factor.First we note that in any ring, the factorization of a polynomial as a monicpolynomial times a unit polynomial, if possible, is unique. Indeed, if mu = m′u′,then m = m′u′u−1 so degm′ ≤ degm, hence, by symmetry degm′ = degm. Asboth m and m′ monic, we must have u′u−1 = 1.



12 ROBERT S. LUBARSKY AND FRED RICHMANWe can characterize the polynomials that can be factored in this way.Theorem 5.2. Let p =∑aiXi be a polynomial over a commutative ring R. Sup-pose am is a unit in R and that ai is nilpotent for i > m. Then p can be written asa unit polynomial times a monic polynomial.Proof. Let I be a fixed nilpotent ideal of R such that ai ∈ I for all i > m. We willmultiply p by a sequence of unit polynomials until it becomes monic.Suppose j > m and d ≥ 1 are such thatai ∈ Id for m < i ≤ jai ∈ Id+1 for i > jMultiply p by the unit polynomial1− ajamXj−mIn the resulting polynomial p′ we havea′m ∈ am + Id is a unita′j = 0 ∈ Id+1a′i ∈ Id + Id = Id for m < i ≤ ja′i ∈ Id+1 + Id+d = Id+1 for i > jWhen j = m + 1, we get a′i ∈ Id+1 for all i > m. At that point we set d equald+ 1 and continue until Id = 0. At that point the polynomial has a unit am as itsformal leading coefficient. �The converse of Theorem 5.2 is also true because the units in the ring R [X]are exactly those polynomials whose constant term is a unit in R and whose othercoefficients are nilpotent.We end this section by applying Theorem 5.1 to polynomials over the complexnumbers and their spectra.Theorem 5.3. If a and b are nonconstant monic polynomials over C, then thedistance between speca and spec b is positive if and only if a and b are comaximal.Proof. We will apply Theorem 5.1. As a and b are monic, their leading coefficientsare certainly comaximal. So a and b are comaximal if and only if their resultantis a unit, that is, if and only if the resultant is different from zero. It thus sufficesto show that the resultant is different from zero if and only if the distance betweenspeca and spec b is positive.The resultant, as a function of the coefficients of a and b, is clearly uniformlycontinuous on bounded subsets. So if ∏mi=1 (X − qi) and ∏nj=1 (X − rj) are closeto a and b respectively, then ∏i,j (qi − rj) is close to the resultant of a and b.Thus the resultant of a and b is the limit of ∏i,j (qi − rj). On the other hand, thedistance between speca and spec b is the limit of min |qi − rj |. Clearly∏i,j (qi − rj)is eventually bounded away from zero if and only if min |qi − rj | is. �



ZERO SETS OF UNIVARIATE POLYNOMIALS 136. Examples of Riesz spacesThe question is raised in [2] as to whether you can construct the points of thespectrum of a separable Riesz space, all of whose elements are normable, in theabsence of countable choice. The authors, referring to [3], suggested basing a coun-terexample on the zero set of X2 − a. However it appeared that the resultingRiesz space was not separable. Here we elaborate on that construction and give aseparable counterexample.A Riesz space is a lattice ordered vector space V over the rational numberswith an element 1 such that for each v in V , there exists a positive integer n suchthat v ≤ n·1. The canonical example is the space of uniformly continuous functionson a compact metric space, where 1 is the constant function whose value is 1. Wesay that V is normable, or normed, if for each v ∈ V , the set {q ∈ Q : v ≤ q · 1}has an infimum in R. We call this greatest lower bound the least upper boundof v. The norm of f is defined to be the least upper bound of |v| = v ∨ 0− v ∧ 0.Note that classically every Riesz space is normed.Let S be a quasilocated subset of the complex plane that is contained in a closeddisc D. Let C (D) be the Riesz space of uniformly continuous real valued functionson D. Let K be the functions in C (D) that vanish on S. The set K is a subspaceof C (D) that is closed under the lattice operations. Our counterexample is thespace C (D) /K. It is separable because C (D) is. Note that this is not exactlythe space of uniformly continuous functions on S, it is the space of those uniformlycontinuous functions on S that extend to uniformly continuous functions on D.If f ∈ C (D), then f vanishes on S if and only if f and −f are nonnegativeon S. Note that if f is nonnegative on S, and g vanishes on S, then f + g isnonnegative on S, so this defines a notion of nonnegativity on C (D) /K. You getanother notion of nonnegativity on C (D) /K by considering those functions thatcome from nonnegative functions in C (D). However, if f is nonnegative on S, thenf is equal to f ∨ 0 on S, so these two notions are the same.Theorem 6.1. Let S be a quasilocated subset of the complex plane that is con-tained in a closed disc D. Let C (D) be the Riesz space of uniformly continuousreal valued functions on D and let K be the functions in C (D) that vanish on S.Then every element of C (D) /K is normable, and each Riesz-space homomorphismC (D) /K → R that takes 1 to 1 is given by evaluation at a point z0 ∈ D suchthat δ (z0, S) = 0. Conversely, if δ (z0, S) = 0, and f ∈ K, then f (z0) = 0, soevaluation at z0 gives a Riesz-space homomorphism C (D) /K → R that takes 1 to1.Proof. We want to approximate the least upper bound of f on S to within ε.Choose θ > 0 so that if d (x, y) ≤ θ, then |f (x)− f (y)| < ε/2. Take a finite θ/4-approximation F to D and partition F into two subsets, one, S′, where δ (x, S) < θand one where δ (x, S) > θ/2. Let µ be the supremum of f on S′. We want to showthat f ≤ µ+ ε on S and that it is not the case that f ≤ µ− ε on S.To show that f ≤ µ+ ε on S, let s ∈ S. There is s′ ∈ S′ such that d (s, s′) < θfor otherwise d (s, s′) > θ/2 for every s′ ∈ S′. But d (s, t) < θ/2 for some t ∈ F ,and this t must be in S′. Thus |f (s)− f (s′)| < ε/2. As f (s′) ≤ µ, we concludethat f (s) ≤ µ+ ε/2.



14 ROBERT S. LUBARSKY AND FRED RICHMANNow suppose f ≤ µ− ε on S. We know that there is s′ ∈ S′ such that f (s′) isarbitrarily close to µ. Note that Bθ (s′)∩ S cannot be empty because δ (s′, S) < θ.Yet if s ∈ Bθ (s′)∩S, then |f (s)− f (s′)| < ε/2, so f (s′) ≤ µ−ε/2, a contradiction.For the second claim, let ρ be a Riesz-space homomorphism C (D) /K → Rtaking 1 to 1. This induces a homomorphism ρ : C (D)→ R taking 1 to 1 and Kto zero. To see that ρ is given by evaluation at a point in D, let W be the vectorsublattice of C (D) generated by 1 and the two coordinate projections, π1 and π2.Then W is dense in C (D) by the Stone-Weierstrass approximation theorem (seebelow). Let z0 = ρ (π1) + iρ (π2). It’s easy to see that ρ is evaluation at z0 on W ,hence is evaluation at z0 on C (D).We want to show that δ (z0, S) = 0. The function f (x) = δ (x, S) is in C (D) andvanishes on S. So ρ (f) = 0. But ρ is evaluation at z0, so δ (z0, S) = 0. Conversely,suppose δ (z0, S) = 0 and f ∈ K. Then Lemma 1.7 tells us that f (z0) = 0. �Corollary 6.2. Let S be the root set of a nonconstant monic polynomial p and letV = C (D) /K be the Riesz space associated with S as in the theorem. Then V isnormed and separable, and each Riesz-space homomorphism from V onto R givesa root of p.Proof. The space V is separable because the space C (D) is separable. As p is inK, if δ (z0, S) = 0, then z0 is a root of p. �The point of the corollary is that, in the absence of choice, we need not be ableto construct a root of the polynomial p (X) = X2 − a, see [3], so we need not beable to construct a Riesz-space homomorphism from a normed, separable, Rieszspace onto R.We include a short choice-free proof of the Stone-Weierstrass theorem for thesquare, which was appealed to in the proof of Theorem 6.1. We want to approximatenonegative functions on the square by finite suprema of finite infima of functions ofthe form ax+ by + c, that is, functions whose graphs are planes. Suppose we havea little square Si in a grid and a nonnegative constant ci. Let ϕi be the infimumof the constant ci and one affine function for each side L of Si whose value is ci onL and 0 on the opposite side of the other little square in the grid with side L. Thegraph of ϕi is a pyramid with its top cut off. Let ψ = supi ϕi. Let J be the indexesof the block of nine little squares centered at Si. If x ∈ Si, theninfj∈J cj ≤ ψ (x) ≤ supj∈J cjGiven a uniformly continuous function f on the square, choose a grid so that f doesnot vary by more than ε on any block of nine little squares in the grid. Chooseci to be the value of f in the center of the little square Si and let ψ be as above.Then ψ approximates f within ε. References[1] Bishop, Errett, Foundations of constructive analysis, McGraw-Hill 1967[2] Coquand, Thierry and Bas Spitters, Formal topology and constructive mathematics: theGelfand and Stone-Yoshida representation theorems, Journal of Universal Computer Science,11 (2005) 1932—1944[3] Richman, Fred, The fundamental theorem of algebra: a constructive development withoutchoice, Pacific Journal of Mathematics, 196 (2000), 213-230. MR 2001k:03141
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