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Is it just true constructively?

No! Example: Sheaves over C. (Fourman-Hyland)

Is it ever true constructively?

– Over a discrete field.

– Under Countable Choice.

– When the coefficients are Cauchy reals. (Ruitenburg)
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– Roots that may or may not be repeated.
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What’s the problem constructively?

– Roots that may or may not be repeated.

How can you tell when a root is repeated?

– Compare f and its derivative f ′.
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What’s the problem constructively?

– Roots that may or may not be repeated.

How can you tell when a root is repeated?

– Compare f and its derivative f ′.
How can you see if they have a common factor?
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What’s the problem constructively?

– Roots that may or may not be repeated.

How can you tell when a root is repeated?

– Compare f and its derivative f ′.
How can you see if they have a common factor?

– The Euclidean algorithm.
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Theorem
Let f be a nonconstant monic polynomial over C. Then the
assumption that f has no roots leads to a contradiction.
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Theorem
Let f be a nonconstant monic polynomial over C. Then the
assumption that f has no roots leads to a contradiction.

Proof.
Apply the Euclidean algorithm to f and f ′.
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Theorem
Let f be a nonconstant monic polynomial over C. Then the
assumption that f has no roots leads to a contradiction.

Proof.
Apply the Euclidean algorithm to f and f ′. If the GCD has degree
> 1, you’re done by induction.
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Theorem
Let f be a nonconstant monic polynomial over C. Then the
assumption that f has no roots leads to a contradiction.

Proof.
Apply the Euclidean algorithm to f and f ′. If the GCD has degree
> 1, you’re done by induction. Else we have polynomials s and t
with sf + tf ′ = 1.
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Theorem
Let f be a nonconstant monic polynomial over C. Then the
assumption that f has no roots leads to a contradiction.

Proof.
Apply the Euclidean algorithm to f and f ′. If the GCD has degree
> 1, you’re done by induction. Else we have polynomials s and t
with sf + tf ′ = 1. Approximate f by g = Πi (x − qi ); note f ′ is
approximated by g ′.
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Theorem
Let f be a nonconstant monic polynomial over C. Then the
assumption that f has no roots leads to a contradiction.

Proof.
Apply the Euclidean algorithm to f and f ′. If the GCD has degree
> 1, you’re done by induction. Else we have polynomials s and t
with sf + tf ′ = 1. Approximate f by g = Πi (x − qi ); note f ′ is
approximated by g ′. So f (q1) is close to 0,

Robert Lubarsky Fred Richman Florida Atlantic University The Weak Fundamental Theorem of Algebra



Outline
The Fundamental Theorem of Algebra

The Weak Fundamental Theorem of Algebra
Comaximality

References

The Weak Fundamental Theorem of Algebra

Theorem
Let f be a nonconstant monic polynomial over C. Then the
assumption that f has no roots leads to a contradiction.

Proof.
Apply the Euclidean algorithm to f and f ′. If the GCD has degree
> 1, you’re done by induction. Else we have polynomials s and t
with sf + tf ′ = 1. Approximate f by g = Πi (x − qi ); note f ′ is
approximated by g ′. So f (q1) is close to 0, f ′(q1) is bounded away
from 0,
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Theorem
Let f be a nonconstant monic polynomial over C. Then the
assumption that f has no roots leads to a contradiction.

Proof.
Apply the Euclidean algorithm to f and f ′. If the GCD has degree
> 1, you’re done by induction. Else we have polynomials s and t
with sf + tf ′ = 1. Approximate f by g = Πi (x − qi ); note f ′ is
approximated by g ′. So f (q1) is close to 0, f ′(q1) is bounded away
from 0, g ′(q1) = Πi �=1(q1 − qi),
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Theorem
Let f be a nonconstant monic polynomial over C. Then the
assumption that f has no roots leads to a contradiction.

Proof.
Apply the Euclidean algorithm to f and f ′. If the GCD has degree
> 1, you’re done by induction. Else we have polynomials s and t
with sf + tf ′ = 1. Approximate f by g = Πi (x − qi ); note f ′ is
approximated by g ′. So f (q1) is close to 0, f ′(q1) is bounded away
from 0, g ′(q1) = Πi �=1(q1 − qi), and q1 is bounded away from each
of the other qi ’s.
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Theorem
Let f be a nonconstant monic polynomial over C. Then the
assumption that f has no roots leads to a contradiction.

Proof.
Apply the Euclidean algorithm to f and f ′. If the GCD has degree
> 1, you’re done by induction. Else we have polynomials s and t
with sf + tf ′ = 1. Approximate f by g = Πi (x − qi ); note f ′ is
approximated by g ′. So f (q1) is close to 0, f ′(q1) is bounded away
from 0, g ′(q1) = Πi �=1(q1 − qi), and q1 is bounded away from each
of the other qi ’s. So we have coherent approximations to the root
near q1.
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So the root set S of a polynomial may not be inhabited, but it
can’t be empty.
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So the root set S of a polynomial may not be inhabited, but it
can’t be empty. In fact,

� the distance d(z ,S) = infx∈S d(z , x) may not be defined, but
the quasi-distance δ(z ,S) = supx∈S d(z , x) is;
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So the root set S of a polynomial may not be inhabited, but it
can’t be empty. In fact,

� the distance d(z ,S) = infx∈S d(z , x) may not be defined, but
the quasi-distance δ(z ,S) = supx∈S d(z , x) is;

� S may not be finite, but it’s quasi-finite; and
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So the root set S of a polynomial may not be inhabited, but it
can’t be empty. In fact,

� the distance d(z ,S) = infx∈S d(z , x) may not be defined, but
the quasi-distance δ(z ,S) = supx∈S d(z , x) is;

� S may not be finite, but it’s quasi-finite; and

� there is a Riesz space of functions on S .
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Definition
In a ring R , a and b are comaximal if the ideal (a, b) equals R ; i.e.
for some s, t ∈ R sa + tb = 1.
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Comaximality

Definition
In a ring R , a and b are comaximal if the ideal (a, b) equals R ; i.e.
for some s, t ∈ R sa + tb = 1.

Definition
The resultant of polynomials a(x) and b(x), Res(a, b), is the
determinant of the Sylvester matrix.
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Comaximality

Definition
In a ring R , a and b are comaximal if the ideal (a, b) equals R ; i.e.
for some s, t ∈ R sa + tb = 1.

Definition
The resultant of polynomials a(x) and b(x), Res(a, b), is the
determinant of the Sylvester matrix.

Example: For a = Σiaix
i and b = Σjbjx

j , the Sylvester matrix is


a2 a1 a0 0 0 0
0 a2 a1 a0 0 0
0 0 a2 a1 a0 0
0 0 0 a2 a1 a0

b4 b3 b2 b1 b0 0
0 b4 b3 b2 b1 b0




.
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Definition
In a ring R , a and b are comaximal if the ideal (a, b) equals R ; i.e.
for some s, t ∈ R sa + tb = 1.

Definition
The resultant of polynomials a(x) and b(x), Res(a, b), is the
determinant of the Sylvester matrix.

Standard Facts If a = Π(x − qi ) and b = Π(x − rj ), then Res(a, b)
= Π(qi − rj).
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Comaximality

Definition
In a ring R , a and b are comaximal if the ideal (a, b) equals R ; i.e.
for some s, t ∈ R sa + tb = 1.

Definition
The resultant of polynomials a(x) and b(x), Res(a, b), is the
determinant of the Sylvester matrix.

Standard Facts If a = Π(x − qi ) and b = Π(x − rj ), then Res(a, b)
= Π(qi − rj). So over a discrete field, Res(a, b) = 0 iff a and b
have a common non-trivial factor.
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Comaximality

Definition
In a ring R , a and b are comaximal if the ideal (a, b) equals R ; i.e.
for some s, t ∈ R sa + tb = 1.

Definition
The resultant of polynomials a(x) and b(x), Res(a, b), is the
determinant of the Sylvester matrix.

Standard Facts If a = Π(x − qi ) and b = Π(x − rj ), then Res(a, b)
= Π(qi − rj). So over a discrete field, Res(a, b) = 0 iff a and b
have a common non-trivial factor.
This doesn’t generalize well to arbitrary rings. Example: Over Z8,
x2 + 4 and x2 + 4x have a resultant of 0 but no non-trivial
common factors. Hence:
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Comaximality

Definition
In a ring R , a and b are comaximal if the ideal (a, b) equals R ; i.e.
for some s, t ∈ R sa + tb = 1.

Definition
The resultant of polynomials a(x) and b(x), Res(a, b), is the
determinant of the Sylvester matrix.

Standard Facts If a = Π(x − qi ) and b = Π(x − rj ), then Res(a, b)
= Π(qi − rj). So over a discrete field, Res(a, b) = 0 iff a and b
have a common non-trivial factor.

Theorem
For a and b monic, Res(a, b) is a unit iff a and b are comaximal.
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Comaximality

Definition
In a ring R , a and b are comaximal if the ideal (a, b) equals R ; i.e.
for some s, t ∈ R sa + tb = 1.

Definition
The resultant of polynomials a(x) and b(x), Res(a, b), is the
determinant of the Sylvester matrix.

Theorem
For a and b monic, Res(a, b) is a unit iff a and b are comaximal.

Corollary

For a and b monic polynomials over C, Res(a, b) is a unit iff a and
b are comaximal iff there is a positive distance between the roots
of a and b.
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