The Kripke Schema in Metric Topology

Robert Lubarsky, Fred Richman, and Peter Schuster

March 2, 2012

Abstract

Kripke's schema with parameters turns out to be equivalent to each of the following two statements from metric topology: every open subspace of a separable metric space is separable; every open subset of a separable metric space is a countable union of open balls. Thus Kripke's schema serves as a point of reference for classifying theorems of classical mathematics within Bishop-style constructive reverse mathematics.

In this paper we show that a certain version of Kripke's schema with parameters is equivalent to either of the following two statements from metric topology: every open subspace of a separable metric space is separable; every open subset of a separable metric space is a countable union of open balls. By so doing we use Kripke's schema as a point of reference for classifying theorems of classical mathematics within the informal variant of the constructive reverse mathematics programme put forward by Ishihara [7, 8].¹ As for the latter, the overall framework of the present note is Bishop-style constructive mathematics [1, 2, 3, 4, 10], which can be thought of as mathematics carried out with intuitionistic logic [11].

The Kripke Schema can be stated as follows [3]:

For each proposition P there is an increasing binary sequence (a_n) such that P holds if and only if $a_n = 1$ for some n.

Clearly the Kripke schema follows from the law of excluded middle: set $a_n = 1$ (respectively, $a_n = 0$) for every n whenever P (respectively, $\neg P$) holds.

¹For more references and other authors on constructive reverse mathematics see [9].

However, Kripke's schema was intended to capture the essence of Brouwer's creating subject, an idealised mathematician (IM) living forever in discrete time. One can tell whether at time n the IM has already proved a proposition P, whence one can define the increasing binary sequence (a_n) by setting $a_n = 1$ precisely when the IM has proved P at time n or before. Brouwer conceived the creating subject in order to refute Markov's principle within intuitionistic mathematics. Indeed, in the presence of Kripke's schema, Markov's principle implies the law of excluded middle.

A subset Y detachable from a set X if for each $x \in X$ either $x \in Y$ or $x \notin Y$. A set S is countable [10] if there is a surjective mapping $D \to S$ from a detachable subset D of N onto S. Note that a detachable subset of a countable set is countable.

With this notion of a countable set, which includes the empty set, a parametrised version of Kripke's schema [13] can be stated as follows [12]:

\mathbf{KS}_{ω} Every subset of \mathbb{N} is countable.

In fact a subset S of \mathbb{N} is countable precisely when it is simply existential: that is, $S = \pi_1(E)$ for a detachable subset E of $\mathbb{N} \times \mathbb{N}$, where π_1 denotes the first projection. We refer to [12] for more on Kripke's schema including further references.

A set X is discrete if for every pair $x, y \in X$ either x = y or $x \neq y$. Clearly, every subset of a discrete set is discrete as well. We say that a subset Y of a set X is proper if there is $x \in X$ with $x \notin Y$. The equivalence of KS_{ω} with item 1 of the following lemma has been observed in [12].

Lemma 1 Each of the following items is equivalent to KS_{ω} :

- 1. Every subset of a countable set is countable.
- 2. Every subset of a discrete countable set is countable.
- 3. Every proper subset of a countable set is countable.
- 4. Every proper subset of a discrete countable set is countable.

A metric space is *separable* if it has a countable dense subset. As an easy exercise in metric topology, the proof of the next lemma is left to the reader; for the first part see, for example, the proof of [6, VIII 7.2 (2)].

Lemma 2 Let A be an open subset of a metric space X.

- 1. If S is a dense subset of X, then $S \cap A$ is dense in A.
- 2. If T is a dense subset of A, then for each $a \in A$ there are $t \in T$ and $r \in \mathbb{Q}^+$ with

$$a \in B_r(t) \subseteq A$$

On a discrete set X one can define the usual discrete metric. Recall that, with this metric on X, if $B_r(a)$ is the open ball $B_r(a)$ with center $a \in X$ and radius r > 0, then $B_r(a) = \{a\}$ if $r \leq 1$, and $B_r(a) = X$ if r > 1. In particular, if an open ball is a proper subset, then it is a singleton.

Lemma 3 Let X be a discrete set with the discrete metric.

- 1. A subset of X is countable if and only if it is separable.
- 2. A proper subset of X is countable if and only if it is a countable union of open balls.

Lemma 4 KS_{ω} is equivalent to the statement

(*) Every open, separable subset of a metric space is a countable union of open balls with rational radii.

Proof. Let T be a countable dense subset of the open subset A of a metric space X. Note first that

$$\mathcal{B} = \{ B_r(t) : r \in \mathbb{Q}^+, \ t \in T \}$$

is a countable set, as it is indexed by the countable set $\mathbb{Q}^+ \times T$. Suppose KS_{ω} true. Then the subset

$$\mathcal{B}_A = \{ B \in \mathcal{B} : B \subseteq A \}$$

of \mathcal{B} is countable, and by Lemma 2 we have $A = \bigcup \mathcal{B}_A$.

Conversely, let S be a subset of N and consider the subset A of \mathbb{Q} , with the usual metric, consisting of $S \cup (\mathbb{Q} \setminus \mathbb{N})$. As $\mathbb{Q} \setminus \mathbb{N}$ is dense, the subset A is separable. As each element $s \in S$ is contained in the ball $B_1(s)$, which is totally contained in A, the subset A is open. If A is a countable union of open balls with rational radii, then S is countable.

At the end of the proof, no appeal to countable choice is required: if B is an open ball with rational radius that is contained in A, then $B \cap S$ is finite. Compare condition (*) in Lemma 4 to its special case "every separable metric space is a countable union of open balls", which is provable without KS_{ω} along the lines of the foregoing proof. Also, (*) trivially holds for discrete sets with the discrete metric.

Proposition 5 Each of the following statements is equivalent to KS_{ω} :

- 1. Every open subspace of a separable metric space is separable.
- 2. Every open subset of a separable metric space is a countable union of open balls.

Proof. We think of KS_{ω} as characterised in Lemma 1. In particular KS_{ω} is nothing but statement 1 applied to the discrete metric on any discrete set. Conversely, the general form of statement 1 follows from KS_{ω} in view of Lemma 2. To see that KS_{ω} implies statement 2, we also use it in the form of statement 1, and apply Lemma 4. By Lemma 3, KS_{ω} follows from statement 2. \blacksquare

Note that in computable analysis [14] an open subset of a (separable) metric space can be characterised as a countable union of open balls.

Acknowledgements This topic was prompted by the investigations [5] of Beppo Levi's approximation principle Bruni and Schuster have undertaken.

References

- [1] BISHOP, E., Foundations of Constructive Analysis. McGraw-Hill, New York (1967)
- [2] BISHOP, E., and D. BRIDGES, *Constructive Analysis*. Springer, Berlin und Heidelberg (1985)
- [3] BRIDGES, D., and F. RICHMAN, Varieties of Constructive Mathematics. Cambridge University Press (1987)

- [4] BRIDGES, D., and L. VÎŢĂ, Techniques of Constructive Analysis. Springer, New York (2006)
- [5] BRUNI, R., and P. SCHUSTER, Approximating Beppo Levi's principio d'approssimazione. Preprint, University of Florence (2010)
- [6] DUGUNDJI, J., Topology. Allyn & Bacon, Boston (1966)
- [7] ISHIHARA, H., Informal constructive reverse mathematics. Sūrikaisekikenkyūsho Kōkyūroku 1381 (2004) 108–117
- [8] ISHIHARA, H., Reverse mathematics in Bishop's constructive mathematics. *Philosophia Scientiae*, cahier spécial 6 (2006) 43–59
- [9] ISHIHARA, H., and P. SCHUSTER, Kronecker's density theorem and irrational numbers in constructive reverse mathematics. *Math. Semester*ber. 57 (2010) 57–72
- [10] MINES, R., W. RUITENBURG, and F. RICHMAN, A Course in Constructive Algebra. Springer, New York (1987)
- [11] RICHMAN, F., Intuitionism as generalization. Philos. Math. (3) 5 (1990) 124–128
- [12] SCHUSTER, P., and J. ZAPPE, Über das Kripke-Schema und abzählbare Teilmengen. Logique et Analyse (N.S.) 51 (2008) 317–329
- [13] TROELSTRA, A.S., and D. VAN DALEN, Constructivism in Mathematics. Two volumes. North-Holland, Amsterdam (1988)
- [14] WEIHRAUCH, K., Computable Analysis. An Introduction. Springer (2000)

Robert Lubarsky, Fred Richman

Department of Mathematical Sciences, Florida Atlantic University 777 Glades Road, Boca Raton, FL 33431, U.S.; rlubarsk@fau.edu, richman@fau.edu

Peter Schuster (corresponding author) Department of Pure Mathematics, University of Leeds Woodhouse Lane, Leeds LS2 9JT, U.K.; pschust@maths.leeds.ac.uk