Well-Founded Iterations of Infinite Time Turing Machines

Robert S. Lubarsky Florida Atlantic University

August 11, 2009

Robert S. Lubarsky Florida Atlantic University Well-Founded Iterations of Infinite Time Turing Machines

Applications

Useful for ordinal analysis

Robert S. Lubarsky Florida Atlantic University Well-Founded Iterations of Infinite Time Turing Machines

・ロト ・四ト ・ヨト ・ヨト

Applications

Useful for ordinal analysis Iteration and hyper-iteration/feedback

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

Applications

Useful for ordinal analysis Iteration and hyper-iteration/feedback

► Turing jump → hyperarithmetic sets

・ 同 ト ・ ヨ ト ・ ヨ ト

Applications

Useful for ordinal analysis Iteration and hyper-iteration/feedback

- Turing jump \mapsto hyperarithmetic sets
- Inductive definitions \mapsto the μ -calculus

・ 回 ト ・ ヨ ト ・ ヨ ト

Applications

Useful for ordinal analysis Iteration and hyper-iteration/feedback

- ► Turing jump → hyperarithmetic sets
- Inductive definitions \mapsto the μ -calculus
- ► ITTMs \mapsto ???

・ 同 ト ・ ヨ ト ・ ヨ ト

First Definitions

(Hamkins & Lewis) An *Infinite time Turing machine* is a regular Turing machine with limit stages.

- 4 回 ト - 4 回 ト - 4 回 ト

First Definitions

(Hamkins & Lewis) An *Infinite time Turing machine* is a regular Turing machine with limit stages. At a limit stage:

- 4 回 ト - 4 回 ト - 4 回 ト

First Definitions

(Hamkins & Lewis) An *Infinite time Turing machine* is a regular Turing machine with limit stages. At a limit stage:

the machine is in a dedicated state

・ 同・ ・ ヨ・ ・ ヨ・

First Definitions

(Hamkins & Lewis) An *Infinite time Turing machine* is a regular Turing machine with limit stages. At a limit stage:

- the machine is in a dedicated state
- the head is on the 0th cell

First Definitions

(Hamkins & Lewis) An *Infinite time Turing machine* is a regular Turing machine with limit stages. At a limit stage:

- the machine is in a dedicated state
- ▶ the head is on the 0th cell
- the content of a cell is limsup of the previous contents (i.e. 0 if eventually 0, 1 if eventually 1, 1 if cofinally alternating)

(本間) (本語) (本語)

Writable reals and ordinals

Definition

 $R \subseteq \omega$ is writable

if its characteristic function is on the output tape at the end of a halting computation.

(4回) (4回) (4回)

Writable reals and ordinals

Definition

 $R \subseteq \omega$ is writable

if its characteristic function is on the output tape at the end of a halting computation.

An ordinal α is writable

if some real coding α (via some standard representation) is writable.

A (1) < A (2) < A (2) </p>

Writable reals and ordinals

Definition

 $R \subseteq \omega$ is writable

if its characteristic function is on the output tape at the end of a halting computation.

An ordinal α is writable

if some real coding α (via some standard representation) is writable.

 $\lambda := \sup \{ \alpha \mid \alpha \text{ is writable} \}$

A (1) < A (2) < A (2) </p>

Writable reals and ordinals

Definition

 $R \subseteq \omega$ is writable

if its characteristic function is on the output tape at the end of a halting computation.

An ordinal α is writable

if some real coding α (via some standard representation) is writable.

 $\lambda := \sup \ \{ \alpha \mid \alpha \text{ is writable} \}$

Proposition

 $R \subseteq \omega$ is writable iff $R \in L_{\lambda}$.

- - E - F

Eventually writable reals and ordinals

Definition

$R \subseteq \omega$ is eventually writable

if its characteristic function is on the output tape, never to change, of a computation.

An ordinal α is eventually writable

if some real coding α (via some standard representation) is eventually writable.

$$\zeta := \sup \ \{ \alpha \mid \alpha \text{ is eventually writable} \}$$

Proposition

 $R \subseteq \omega$ is eventually writable iff $R \in L_{\zeta}$.

A (10) × (10) × (10) ×

Accidentally writable reals and ordinals

Definition

$R \subseteq \omega$ is accidentally writable

if its characteristic function is on the output tape at any time during a computation.

An ordinal α is **accidentally writable** if some real coding α (via some standard representation) is accidentally writable.

 $\mathbf{\Sigma} := \sup \ \{ \alpha \mid \alpha \text{ is accidentally writable} \}$

Proposition

 $R \subseteq \omega$ is accidentally writable iff $R \in L_{\Sigma}$.

A (10) × (10) × (10) ×

Summary and conclusions

 λ is the supremum of the writables. ζ is the supremum of the eventually writables. Σ is the supremum of the accidentally writables. Clearly, $\lambda \leq \zeta \leq \Sigma$.

< 回 > < 三 > < 三 >

Summary and conclusions

 λ is the supremum of the writables.

 $\boldsymbol{\zeta}$ is the supremum of the eventually writables.

 Σ is the supremum of the accidentally writables.

Clearly, $\lambda \leq \zeta \leq \Sigma$.

Theorem

(Welch) ζ is the least ordinal α such that L_{α} has a Σ_2 -elementary extension. (ζ is the least Σ_2 -extendible ordinal.) The ordinal of that extension is Σ . L_{λ} is the least Σ_1 -elementary substructure of L_{ζ} .

(本間) (本語) (本語)

Applications	Option
Background	Option
Iterations	Option

Time to iterate

Definition $0^{\checkmark} = \{(e, x) | \phi_e(x) \downarrow \}$

回 と く ヨ と く ヨ と

Applications	Option
Background	Option
Iterations	Option

Time to iterate

Definition $0^{\bullet} = \{(e, x) | \phi_e(x) \downarrow \}$

Proposition

The definitions of λ, ζ , and Σ relativize (to $\lambda^{\blacktriangledown}, \zeta^{\blacktriangledown}$, and $\Sigma^{\blacktriangledown}$) to computations from 0^{\blacktriangledown} . Furthermore, $\zeta^{\blacktriangledown}$ is the least Σ_2 -extendible limit of Σ_2 -extendibles, the ordinal of its Σ_2 extension is $\Sigma^{\blacktriangledown}$, and $\lambda^{\blacktriangledown}$ is the ordinal of its least Σ_1 -elementary substructure.

Applications	Opti
Background	Opti
Iterations	Opti

Time to iterate

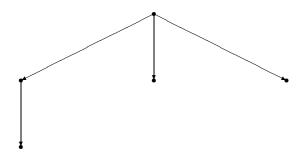
ITTMs with arbitrary iteration:

A computation may ask a convergence question about another computation. This can be considered calling a sub-computation. That sub-computation might do the same. This can continue, generating a tree of sub-computations. Eventually, perhaps, a computation is run which calls no sub-computation. This either converges or diverges. That answer is returned to its calling computation, which then continues.

- 同 ト - 日 ト - 4 日 ト

Applications	Option I
Background	Option I
Iterations	Option I

Good examples



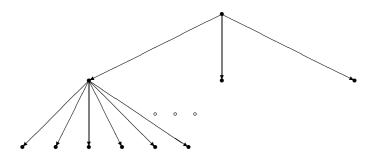
・ロト ・日下・ ・ヨト

< ∃⇒

æ

Applications	Option I
Background	Option I
Iterations	Option I

Good examples



(人間) ト く ヨト

⊸ ≣⇒

æ

Applications	Option	
Background	Option	
Iterations	Option	

Bad example

・ロト ・四ト ・ヨト ・ヨト

æ

Applications	Option I
Background	Option II
Iterations	Option III

Bad example

One can naturally define the course of a computation if and only if the tree of sub-computations is well-founded. How is this to be dealt with?

Option I Option II Option III

Option I

When the main computation makes a sub-call, the call must be made with an ordinal. When a sub-call makes a sub-call itself, that must be done with a smaller ordinal. The definitions of λ, ζ , and Σ relativize (to $\lambda^{it} \Psi, \zeta^{it} \Psi$, and $\Sigma^{it} \Psi$).

・ロト ・回ト ・ヨト ・ヨト

-

Option I Option II Option III

Results

Definition

- β is 0- (or 1-) extendible if its Σ_2 -extendible.
- β is (α +1)-extendible if its a Σ_2 -extendible limit of α -extendibles.

 β is κ -extendible if its a Σ_2 -extendible limit of α -extendibles for each $\alpha < \kappa$.

(本間) (本語) (本語)

Option I Option II Option III

Results

Definition

β is 0- (or 1-) extendible if its Σ_2 -extendible.

 β is (α +1)-extendible if its a Σ_2 -extendible limit of α -extendibles.

 β is κ -extendible if its a Σ_2 -extendible limit of α -extendibles for each $\alpha < \kappa$.

Proposition

 $\zeta^{it \mathbf{\vee}}$ is the least κ which is κ -extendible, $\Sigma^{it \mathbf{\vee}}$ is its Σ_2 extension, and $\lambda^{it \mathbf{\vee}}$ its least Σ_1 substructure.

(本間) (本語) (本語)

Applications Option I Background Option II Iterations Option II

Option II

Allow all possible sub-computation calls, even if the tree of sub-computations is ill-founded, and consider only those for which the tree of sub-computations just so happens to be well-founded.

- 4 周 ト 4 ヨ ト 4 ヨ ト

Applications Option I Background Iterations

Option II

Option II

Allow all possible sub-computation calls, even if the tree of sub-computations is ill-founded, and consider only those for which the tree of sub-computations just so happens to be well-founded. So some legal computations have an undefined result. Still, among those with a defined result, some computations are halting, and some divergent computations have a stable output.

イロト イボト イヨト イヨト

Option I Option II Option III

Results

BIG FACT If a real is eventually writable in this fashion, then it's writable.

- 4 回 ト 4 三 ト 4 三 ト

Option I Option II Option III

Results

BIG FACT If a real is eventually writable in this fashion, then it's writable.

Proof.

Given *e*, run the computation of ϕ_e . Keep asking "if I continue running this computation until cell 0 changes, is that computation convergent or divergent?" Eventually you will get "divergent" as your answer. Then go on to cell 1, then cell 2, etc. After going through all the natural numbers, you know the real on your output tape is the eventually writable real you want. So halt.

イロト イボト イヨト イヨト

Option I Option II Option III

Results

BIG FACT If a real is eventually writable in this fashion, then it's writable.

SECOND BIG FACT If a real is accidentally writable in this fashion, then it's writable.

- A 🗇 🕨 - A 🖻 🕨 - A 🖻 🕨

Applications	Option	
Background	Option	Ш
Iterations	Option	Ш

QUESTION Why isn't this a contradiction? Why can't you diagonalize?

Robert S. Lubarsky Florida Atlantic University Well-Founded Iterations of Infinite Time Turing Machines

(4回) (4回) (4回)

Option I Option II Option III

Results

QUESTION

Why isn't this a contradiction? Why can't you diagonalize? $\ensuremath{\mathsf{ANSWER}}$

You can't run a universal machine.

As soon as a machine with code for a universal machine makes an ill-founded sub-computation call, it freezes.

Applications	Opt
Background	Opt
Iterations	Opt

Definition

R is **freezingly writable** if R appears anytime during such a computation, even if that computation later freezes.

・ 同 ト ・ 三 ト ・ 三 ト

Applications Op Background Op Iterations Op

Option I Option II Option III

Prospects

Definition

R is **freezingly writable** if R appears anytime during such a computation, even if that computation later freezes.

<u>Claim</u> In order to understand the writable reals in this context, one needs to understand the freezingly writable reals. One also needs to understand the tree of sub-computations for freezing computations.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Applications	Option	
Background	Option	П
Iterations	Option	

Notation Let Λ be the supremum of the ordinals so writable (i.e. with well-founded oracle calls).

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

Applications	Option I
Background	Option II
Iterations	Option II

<u>Notation</u> Let Λ be the supremum of the ordinals so writable (i.e. with well-founded oracle calls).

Then in the sub-computation tree of a freezing computation either:

A (1) < A (2) < A (2) </p>

Applications	Option	
Background	Option	П
Iterations	Option	

<u>Notation</u> Let Λ be the supremum of the ordinals so writable (i.e. with well-founded oracle calls).

Then in the sub-computation tree of a freezing computation either:

a) some node has more than A-many children, or

A (1) < A (2) < A (2) </p>

Applications	Option	
Background	Option	П
Iterations	Option	

<u>Notation</u> Let Λ be the supremum of the ordinals so writable (i.e. with well-founded oracle calls).

Then in the sub-computation tree of a freezing computation either:

a) some node has more than Λ -many children, or

b) every level has size less than $\Lambda,$ but those sizes are cofinal in $\Lambda,$ or

- 同 ト - 日 ト - 4 日 ト

Applications	Option	
Background	Option	П
Iterations	Option	

<u>Notation</u> Let Λ be the supremum of the ordinals so writable (i.e. with well-founded oracle calls).

Then in the sub-computation tree of a freezing computation either:

a) some node has more than Λ -many children, or

- b) every level has size less than $\Lambda,$ but those sizes are cofinal in $\Lambda,$ or
- c) the total number of nodes is bounded beneath $\Lambda.$

Applications	Option	
Background	Option	П
Iterations	Option	П

<u>Notation</u> Let Λ be the supremum of the ordinals so writable (i.e. with well-founded oracle calls).

Then in the sub-computation tree of a freezing computation either:

- a) some node has more than Λ -many children, or
- b) every level has size less than $\Lambda,$ but those sizes are cofinal in $\Lambda,$ or
- c) the total number of nodes is bounded beneath $\Lambda.$

Proposition

Options a) and b) are incompatible: there cannot be one tree of sub-computations with more than Λ -much splitting beneath a node and another with the splittings beneath all the nodes cofinal in Λ .

・ 同 ト ・ ヨ ト ・ ヨ ト

Applications	Option I
Background	Option II
Iterations	Option III

Yet another option: parallel computation:

(4回) (4 注) (4 注)

Applications	Option I
Background	Option II
Iterations	Option III

Yet another option: parallel computation: An oracle call may be the question "does one of these computations converge?" The computation asked about has an index e, parameter x, and free variable n.

伺 ト イ ヨ ト イ ヨ ト

Applications	Option	
Background	Option	
Iterations	Option	ш

Yet another option: parallel computation:

An oracle call may be the question "does one of these computations converge?" The computation asked about has an index e, parameter x, and free variable n. If one (natural number) value for n yields a convergent computation, the answer is "yes", even if other values yield freezing computations. The answer "yes" means some natural number yields a convergent computation, even if other numbers yield freezing. The answer "no" means all parameter values yield non-freezing computations and all are divergent.

A (10) × (10) × (10) ×

Applications	Option	
Background	Option	
Iterations	Option	Ш

Yet another option: parallel computation:

An oracle call may be the question "does one of these computations converge?" The computation asked about has an index e, parameter x, and free variable n. If one (natural number) value for n yields a convergent computation, the answer is "yes", even if other values yield freezing computations. The answer "yes" means some natural number yields a convergent computation, even if other numbers yield freezing. The answer "no" means all parameter values yield non-freezing computations and all are divergent. (Notice this is the same question as "does one of these computations diverge?", since divergence and convergence can be interchanged.)

オポト イヨト イヨト

Applications	Option	
Background	Option	
Iterations	Option	Ш

Yet another option: parallel computation:

An oracle call may be the question "does one of these computations converge?" The computation asked about has an index e, parameter x, and free variable n. If one (natural number) value for n yields a convergent computation, the answer is "yes", even if other values yield freezing computations. The answer "yes" means some natural number yields a convergent computation, even if other numbers yield freezing. The answer "no" means all parameter values yield non-freezing computations and all are divergent. (Notice this is the same question as "does one of these computations diverge?", since divergence and convergence can be interchanged.) to be continued

オポト イヨト イヨト

Applications Background Iterations

References

- Joel Hamkins and Andy Lewis, "Infinite Time Turing Machines," The Journal of Symbolic Logic, v. 65 (2000), p. 567-604
- ▶ Robert Lubarsky, "ITTMs with Feedback," to appear
- Philip Welch, "The Length of Infinite Time Turing Machine Computations," The Bulletin of the London Mathematical Society, v. 32 (2000), p. 129-136
- Philip Welch, "Eventually Infinite Time Turing Machine Degrees: Infinite Time Decidable Reals," The Journal of Symbolic Logic, v. 65 (2000), p. 1193-1203
- Philip Welch, "Characteristics of Discrete Transfinite Turing Machine Models: Halting Times, Stabilization Times, and Normal Form Theorems," Theoretical Computer Science, v. 410 (2009), p. 426-442