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Abstract. We present some new results, and survey some old results, on the structure of honest ele-
mentary degrees. This paper should be a suitable first introduction to the honest elementary degrees.

Introduction

This paper is devoted to the study of the structure of the honest elementary degrees.
We present some new results, but this is also a kind of introduction and survey paper.
The new material are found in Section 6 and 7. In the remaining sections, we survey
the same material as we do in Part I of [9], but we give more detailed proofs and more
elaborated explanations. This should be the most thorough and readable introduction to
the honest elementary degrees available so far. But be aware that we are talking about
a technical introduction, and it is beyond the scope of this paper to motivate our study
of the honest elementary degrees.

The roots of our subject can be found in subrecursion theory from the 1970s. Some
relevant papers are Meyer & Ritchie [13] and Machtey [10, 11, 12]. The theory of
honest elementary degrees, in the form presented here, was developed by Kristiansen in
a series of papers (and a thesis) [4, 5, 7, 8] ([6]) from the 1990s. A considerable number
of the results surveyed in Section 2, 3, 4 and 5 was initially published in these papers.

A recent paper by Kristiansen, Schlage-Puchta and Weiermann [9] shows how to
generalise honest elementary degree theory to so-called honest α-elementary degree the-
ory. This generalisation connects honest degree theory with proof theory and provability
of Π0

2-statements in formal systems for mathematics, e.g. Peano Arithmetic. Such a
connection yields a strong motivation for further research in honest degree theory.

1 Preliminaries

We assume the reader is familiar with the most basic concepts of classical computability
theory, see e.g. [14] or [16]. We also assume acquaintance with subrecursion theory and,
in particular, with the elementary functions. An introduction to this subject can be
found in [15] or [17]. Here we just state some important basic facts and definitions, see
[15] and [17] for proofs.

1The first, second and fourth author gratefully acknowledge partial support by grants from the John
Templeton Foundation, grant no. 13396 and grant no. 13152.
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2 Honest elementary degrees

The initial elementary functions are the projection functions (In
i ), the constants 0

and 1, addition (+) and modified subtraction (
.
−). The elementary definition schemes

are composition, that is, f(~x) = h(g1(~x), . . . , gm(~x)) and bounded sum and bounded prod-
uct, that is, respectively f(~x, y) =

∑

i<y g(~x, i) and f(~x, y) =
∏

i<y g(~x, i). A function is
elementary if it can be generated from the initial elementary functions by the elementary
definition schemes. A relation R(~x) is elementary when there exists an elementary func-
tion f with range {0, 1} such that f(~x) = 0 iff R(~x) holds. Relations may also be called
predicates, and we will use the two words interchangeably. A function f has elementary
graph if the relation f(~x) = y is elementary. When we can define a function g from the
function f plus the initial elementary functions by the elementary schemes, we will say
that g is elementary in f .

The definition scheme (µz ≤ x)[. . .] is called the bounded µ-operator, and (µz ≤
y)[R(~x, z)] denotes the least z ≤ y such that the relation R(~x, z) holds. Let (µz ≤
y)[R(~x, z)] = 0 if no such z exists. The elementary functions are closed under the bounded
µ-operator. If f is defined by a primitive recursion over g and h and f(~x, y) ≤ j(~x, y), then
f is defined by bounded primitive recursion over g, h and j. The elementary functions are
closed under bounded primitive recursion, but not under primitive recursion. Moreover,
the elementary relations are closed under the operations of the propositional calculus
and under bounded quantification, i.e., (∀x ≤ y)[R(x)] and (∃x ≤ y)[R(x)].

Let 2x
0 = x and 2x

n+1 = 22x
n , and let S denote the successor function. The class

of elementary functions equals the closure of {0,S,In
i , 2

x,max} under composition and
bounded primitive recursion. Given this characterisation of the elementary functions,

it is easy to see that for any elementary function f , we have f(~x) ≤ 2
max(~x)
k for some

fixed k. It is also easy to see that the class of functions elementary in f is the closure of
{0,S,In

i , 2
x,max, f} under composition and bounded primitive recursion. As remarked

above, the elementary functions are not closed under primitive recursion, but the ele-
mentary predicates will be closed under (unbounded) primitive recursion, that is, when
a predicate P (~x, y) is defined by P (~x, 0) ⇔ φ(~x) and P (~x, y+1) ⇔ ψ(~x, P (~x, y), y), then
P will be elementary if φ and ψ are elementary.

Uniform systems for coding finite sequences of natural numbers are available in-
side the class of elementary functions. Let f(x) be the code number for the sequence
〈f(0), f(1), . . . f(x)〉. Then f belongs to the elementary functions if f does. We will
be quite informal and indicate the use of coding functions with the notations 〈. . .〉 and
(x)i where (〈x0, . . . , xi, . . . , xn〉)i = xi. (So (x, i) 7→ (x)i is an elementary function.)
Our coding system is monotone, i.e., 〈x0, . . . , xn〉 < 〈x0, . . . , xn, y〉 holds for any y, and
〈x0, . . . , xi, . . . , xn〉 < 〈x0, . . . , xi+1, . . . , xn〉. All the closure properties of the elementary
functions can be proved by using Gödel numbering and coding techniques.

For unary functions f, g, we use f ≤ g to denote ∀x ∈ N[f(x) ≤ g(x)], and we use fk

to denote the kth iterate of the function f , that is, f0(x) = x and fk+1(x) = ffk(x).

2 The honest elementary degrees and the growth theorem

Definition 2.1 A function f : N → N is honest if it is monotone (f(x) ≤ f(x + 1)),
dominates 2x (f(x) ≥ 2x) and has elementary graph. �

Note that when f is honest, we have fy+1(x) > fy(x), but we do not necessarily have
f(x + y) > f(x). From now on, we reserve the letters f, g, h, . . . to denote honest
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functions. Small Greek letter like φ,ψ, ξ, . . . will denote number-theoretic functions not
necessarily being honest.

Definition 2.2 A function φ is elementary in a function ψ, written φ ≤E ψ, if φ can
be generated from the initial functions ψ, 2x, max, 0, S (successor), In

i (projections) by
composition and bounded primitive recursion.

We define the relation ≡E by f ≡E g ⇔ f ≤E g ∧ g ≤E f . Now, ≡E is an
equivalence relation on the honest functions, and we will use H denote the set of ≡E-
equivalence classes of honest functions. The elements of H are the honest elementary
degrees. Honest elementary degrees will normally just be called degrees, and following
the tradition of classical computability theory, we use boldface lowercase Latin letters
a,b, c, . . . to denote our degrees.

We will use deg(f) denote the degree of the honest function f , that is, deg(f) = {g |
g ≡E f}.

We define the relation <E by f <E g ⇔ f ≤E g ∧ g 6≤E f ; and the relation |E by
f |E g ⇔ f 6≤E g ∧ g 6≤E f . We will use <,≤, | to denote the relations induced on
the degrees by respectively <E,≤E , |E. We use standard, and presumably very familiar,
language with respect to these ordering relations, and we will, e.g., say that f lies below
g if f ≤E g; that g is strictly above f if f <E g; that c lies strictly between a and b if
a < c < b; that a and b are incomparable if a | b; and so on. �

Theorem 2.3 (Growth Theorem) Let f and g be honest functions. Then, we have

g ≤E f ⇔ g ≤ fk for some fixed k .

Proof. Recall that f is monotone and dominates 2x. By induction on the build-up of a
function ψ form the initial functions 0,S,In

i , 2
x,max, f by composition and bounded

primitive recursion, it is easy to prove that there exists k ∈ N such that ψ(~x) ≤
fk(max(~x)). Hence, if g ≤E f , we have g ≤ fk for some fixed k.

Now, suppose that g ≤ fk. Since g is honest, the relation g(x) = y is elementary.
We have g(x) = (µy ≤ fk(x))[g(x) = y]. Hence, g ≤E f since the functions elementary
in f are closed under composition and the bounded µ-operator. �

The structure of honest elementary degrees is comparable to a classical computability-
theoretic degree structure, e.g., the structure of Turing degrees, but the Growth Theorem
makes it possible to abandon classical computability-theoretic proof methods and inves-
tigate this structure by asymptotic analysis and methods of number theoretic nature.
To prove that g ≤E f , it is sufficient to provide a fixed k such that g(x) ≤ fk(x); to
prove that g 6≤E f , it is sufficient to prove that such a k does not exist. Thus, there
is no need1 for the standard computability-theoretic machinery involving enumerations,
diagonalisations and constructions with requirements to be satisfied. This makes the
proofs concise and transparent.

3 The lattice of honest elementary degrees

Definition 3.1 Least upper bounds and greatest lower bounds are defined the usual
way, and a partially ordered structure where each pair of elements has both a least upper
bound and a greatest lower bound is called a lattice.

1Well, at least we can achieve a lot without resorting to such a machinery. See Section 6.



4 Honest elementary degrees

We define the join of the honest functions f and g, written max[f, g], by

max[f, g](x) = max(f(x), g(x)) .

We define the meet of the honest functions f and g, written min[f, g], by

min[f, g](x) = min(f(x), g(x)) .

�

Lemma 3.2 Let f and g be honest functions. Then, max[f, g] and min[f, g] are honest
functions.

Proof. It is trivial that max[f, g] and min[f, g] are monotone and dominate 2x. To verify
that max[f, g] and min[f, g] have elementary graphs, observe that max[f, g](x) = y holds
iff

(f(x) = y ∧ (∃i ≤ y)[g(x) = i]) ∨ (g(x) = y ∧ (∃i < y)[f(x) = i])

and that min[f, g](x) = y holds iff

(f(x) = y ∧ (∀i ≤ y)[g(x) 6= i]) ∨ (g(x) = y ∧ (∀i < y)[f(x) 6= i]) .

The relations f(x) = y and g(x) = y are elementary. Furthermore, the elementary
relations are closed under bounded quantification and the operations of the propositional
calculus. Hence, both max[f, g](x) = y and min[f, g](x) = y are elementary relations. �

Lemma 3.3 Let f and g be honest functions. Then, we have

min(fm(x), gn(x)) ≤ min[f, g]m+n(x) .

Proof. We prove this lemma by induction on m + n. The lemma holds trivially when
m = 0 or n = 0. Now, assume that m > 0 and n > 0. Then, w.l.o.g. we may assume
that min[f, g](x) = f(x). Together with the induction hypothesis this yields

min(fm(x), gn(x)) ≤ min(fm−1(f(x)), gn(f(x))) ≤

min[f, g]m−1+n(f(x)) = min[f, g]m+n(x) .

�

Lemma 3.4 Let f, g, h be honest functions. (i) min[f, g] ≤E f and min[f, g] ≤E g. (ii)
If h ≤E f and h ≤E g, then h ≤E min[f, g].

Proof. We prove (ii). Assume h ≤E f and h ≤E g. By the Growth Theorem we have
m,n such that h(x) ≤ fm(x) and h(x) ≤ gn(x). By Lemma 3.3, we have

h(x) ≤ min(fm(x), gn(x)) ≤ min[f, g]n+m(x) .

By another application of the Growth Theorem, we have h ≤E min[f, g]. This proves
(ii). The proof of (ii) is straightforward by the Growth Theorem. �

Lemma 3.5 Let f, g, h be honest functions. (i) f ≤E max[f, g] and g ≤E max[f, g]. (ii)
If f ≤E h and g ≤E h, then max[f, g] ≤E h.

Proof. Both (i) and (ii) follow straightforwardly from the Growth Theorem. �

Lemma 3.6 For any honest functions f, f1, g, g1 such that f ≤E f1 and g ≤E g1, we
have (i) min[f, g] ≤E min[f1, g1] and (ii) max[f, g] ≤E max[f1, g1].

Proof. Now, ≤E is transitive, and thus, (i) follows immediately from Lemma 3.4, and
(ii) follows immediately from Lemma 3.5. �
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Our previous lemma entails that

(f ≡E f1 ∧ g ≡E g1) ⇒ (max[f, g] ≡E max[f1, g1] ∧ min[f, g] ≡α min[f1, g1])

when f, f1, g, g1 are honest functions. By Lemma 3.2, we know that max[f, g] and
min[f, g] are honest functions whenever f and g are. Hence, the next definition makes
sense.

Definition 3.7 Let f and g be honest functions such that deg(f) = a and deg(g) = b.
We define the join of a and b, written a ∪ b, by a ∪ b = deg(max[f, g]). We define the
meet of a and b, written a ∩ b, by a ∩ b = deg(min[f, g]). �

Theorem 3.8 (Distributive Lattice) The structure 〈H,≤,∪,∩〉 is a distributive lattice,
that is, for any a,b, c ∈ H, we have (i) a ∩ b is the greatest lower bound of a and b
under the ordering ≤; (ii) a ∪ b is the least upper bound of a and b under the ordering
≤; (iii) a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c) and a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c).

Proof. It follows from Lemma 3.4 (i) that a ∩ b is a lower bound of a and b, and by
Lemma 3.4 (ii), a ∩ b is indeed the greatest lower bound of a and b. This proves
(i). The proof of (ii) is symmetric: use Lemma 3.5 in place of Lemma 3.4. Finally,
(iii) holds since max(x,min(y, z)) = min(max(x, y),max(x, z)) and min(x,max(y, z)) =
max(min(x, y),min(x, z)). �

Let a and b be two degrees such that a ≤ b. Now, we do not necessarily have f ≤ g for
any f ∈ a and g ∈ b. But there will always be some f ∈ a and some g ∈ b such that
we have f(x) ≤ g(x), or even f(x) < g(x), for all x. This is consequence of the lemmas
above: Pick an arbitrary f1 ∈ a and an arbitrary g1 ∈ b, and let f = min[f1, g1] and
g = max[f1, g1]. Now we obviously have and f(x) ≤ g(x) < g2(x) for all x, but we also
have f ∈ a and g, g2 ∈ b.

Theorem 3.9 (Density-Splitting) Let a and b be degrees such that a < b. Then, there
exist incomparable degrees c0 and c1 such that a = c0 ∩ c1 and b = c0 ∪ c1.

Proof. Pick honest functions f and g such that deg(g) = a < b = deg(f) and g(x) <
f(x). We define the sequence d0 < d1 < d2 < . . .. Let d0 = 0, let d2i+1 be the least y
such that

(∃z ≤ y) [ f(z) ≤ y ∧ (∃w ≤ z) [ d2i ≤ w ∧ gi(w) < f(w) ] ](†)

and let d2i+2 = f(d2i+1). Next we define the functions h0 and h1. For  ∈ {0, 1} let
h(x) = max(H(x), g(x)) where

H(x) =

{

f(x) if d4i+2 ≤ x ≤ d4i+2+1 for some i
H(x− 1) otherwise

Since f 6≤E g, there will for each i exist infinitely many z such that gi(z) < f(z). Thus,
there will always be a number satisfying the definition of d2i+1, and thus the sequence
d0 < d1 < d2 < . . . is well defined.

We will now prove that h1 and h2 are honest functions. First, we will argue that
the relation di = y is elementary. This is not obvious as a relation like gi(w) < f(w) is
not necessarily elementary even if f and g are honest functions. However, the relation
gi(w) < f(w) ≤ y will be elementary (in i, w and y) whenever g and f are honest. Now,
the statement (†) involved in the definition of di = y is equivalent to

(∃z ≤ y) [ f(z) ≤ y ∧ (∃w ≤ z) [ d2i ≤ w ∧ gi(w) < f(w) ≤ y ] ] .
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Moreover, the elementary relations are closed under primitive recursion, bounded quanti-
fiers and propositional operations. Thus, di = y is indeed an elementary relation. When
we know that di = y is elementary, it becomes easy to see that h0 and h1 have elementary
graphs. Furthermore, it is obvious that h0 and h1 are monotone and dominate 2x, and
thus, we are dealing with two honest functions.

Next, we will prove that min[h0, h1] ≡E g, that max[h0, h1] ≡E f , and that h0 |E h1.
The theorem follows.

We start by proving min[h0, h1] ≡E g. By the Growth Theorem it suffices to prove
that min[h0, h1](x) = g(x). Assume we have d4i+2 ≤ x < d4i+4. Then

h0(x) = max(H0(x), g(x)) def. of h0

= max(H0(d4i+1), g(x)) def. of H0

= max(f(d4i+1), g(x)) def. of H0

= max(d4i+2, g(x)) def. of d4i+2

= max(x, g(x)) as d4i+2 ≤ x

= g(x) as g(x) ≥ 2x

A symmetric argument shows that h1(x) = g(x) when there exists i such that d4i ≤
x < d4i+2. Hence, for any x, we either have h0(x) = g(x) or h1(x) = g(x), and since
min[h0, h1](x) ≥ g(x), we can conclude that min[h0, h1](x) = g(x). This proves that
min[h0, h1] ≡E g.

Our next task is to prove that max[h0, h1] ≡E f . It follows straightaway from our def-
initions that we have max[h0, h1](x) ≤ f(x). We will prove that f(x) ≤ max[h0, h1]

2(x),
and thus, we have max[h0, h1] ≡E f by the Growth Theorem. The proof of f(x) ≤
max[h0, h1]

2(x) splits into two cases. Case (i): When x is in the interval d2i . . . d2i+1 − 1
for some i, we have f(x) ≤ max[h0, h1]

2(x) as either h0 or h1 will equal f in this interval.
Case (ii): Assume x is in the interval d2i+1 . . . d2i+2 − 1 for some i, and note that

h0(dj) = f(dj) or h1(dj) = f(dj)(*)

holds for any j. We have

f(x) ≤ f(d2i+2) f is monotone

= max[h0, h1](d2i+2) (*)

= max[h0, h1](f(d2i+1)) def. of d2i+2

= max[h0, h1]
2(d2i+1) (*)

≤ max[h0, h1]
2(x) max[h0, h1] is monotone

This completes the proof of max[h0, h1] ≡E f .
Finally, we prove h0 |E h1. Fix an arbitrary m ∈ N. We will argue that there exists x

such that hm
0 (x) < h1(x). Let k ≥ 2m. By the definition of d4k+3 there exists a number

xk in the interval d4k+2, . . . , d4k+3 such that

d4k+2 ≤ gm(xk) ≤ gk(xk) < f(xk) ≤ d4k+3 .(†)
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Now, since d4k+2 ≤ xk ≤ gk(xk) < d4k+3, it follows from the definitions of h0 and
H0 that

(‡) h0(g
ℓ(xk)) = max(H0(g

ℓ(xk)), gg
ℓ(xk)) = max(H0(d4k+1), g

ℓ+1(xk)) =

max(d4k+2, g
ℓ+1(xk)) = max(xk, g

ℓ+1(xk)) = gℓ+1(xk)

holds for any ℓ < k. When we combine (†), (‡) and the definition of h1, we get hm
0 (xk) =

gm(xk) ≤ gk(xk) < f(xk) = h1(xk). This proves that, for any m, we can find x such that
hm

0 (x) < h1(x). By the Growth Theorem, we have h1 6≤E h0. The proof that h0 6≤E h1

is symmetric. Hence, h0 |E h1. �

Results being obviously equivalent to Theorem 3.8 and Theorem 3.9, are proved by
Machtey [11, 12] by traditional computability-theoretic methods.

4 A jump operator on honest elementary degrees

We will now define an operator ·′ transforming an honest function f into a faster increas-
ing honest function f ′. This operator will be called the jump operator.

Definition 4.1 For any honest function f , we define the jump of f , written f ′, by
f ′(x) = fx+1(x). �

Lemma 4.2 Let f be an honest function. Then, f ′ is an honest function.

Proof. It is obvious that f ′ is monotone and dominates 2x. Let ψ(x, y) be an elementary
function that places a bound on the code number for the sequence 〈y, y, . . . , y〉 of length
x+ 1. Then, f ′(x) = y is equivalent to

(∃s ≤ ψ(x, y))[(s)0 = f(x) ∧ (∀i < x)[(s)i+1 = f((s)i)] ∧ (s)x = y] .

Thus, the relation f ′(x) = y is elementary since all the functions, relations and operations
involved in this expression are elementary. This proves that f ′ has elementary graph. �

Lemma 4.3 (Monotonicity of the Jump Operator ) Let f and g be honest functions.
Then, we have

g ≤E f ⇒ g′ ≤E f ′ .

Proof. Suppose g ≤E f . By the Growth Theorem, we have a fixed k such that g(x) ≤
fk(x). Now

g′(x) = gx+1(x) ≤ (fk)x+1(x) ≤ f (kx+k)+1(kx+ k) = f ′(kx+ k) ≤ (f ′)2k(x)

and g′ ≤E f ′ follows by another application of the Growth Theorem. �

Lemma 4.3 entails that f ′ ≡E g′ whenever f and g are honest functions such that
f ≡E g. Hence, the jump operator on the honest functions induce an operator on the
honest elementary degrees.

Definition 4.4 For any honest elementary degree a, we define the jump of a, written
a′, by a′ = deg(f ′) where f is some honest function such that a = deg(f). Furthermore,
we define the zero degree, written 0, by 0 = deg(2x). �

The proof of the next theorem is straightforward. See, Kristiansen [5] for the details.

Theorem 4.5 (Canonical Degrees) We have 0 < 0′ < 0′′ < . . .. Furthermore, 0 is the
least degree, that is, 0 ≤ a holds for any degree a.
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The jump operators of classical computability theory are defined by enumerating all the
functions reducible to an oracle function f , e.g., the Turing jump J (f) of the function
f is defined by J (f)(〈e, x〉) = {e}f (x) where {e}f denotes the eth function Turing
computable in f and 〈·, ·〉 is a computable bijection from N× N into N. Jump operators
based on enumerations are considered to be natural. The reader should note that our
jump operator is equivalent to such a natural jump operator of classical computability
theory: Let {[i]f}i∈N be an elementary enumeration of the functions elementary in the
honest functions f , and let J (f)(〈e, x〉) = [e]f (x) where 〈·, ·〉 is an elementary bijection
from N × N into N. Then, we indeed have f ′ ≡E J (f). For a proof and further details,
see [5] and [6].

However, in our context, the advantage of defining f ′ as an iteration of f is obvious:
The Growth Theorem is very well suited for dealing with a jump operator based on
iterations; we can introduce the canonical degrees 0,0′, . . ., and proceed the development
of our degree theory, without resorting to enumerations and the apparatus of classical
computability theory.

Definition 4.6 We define the nth jump of an honest degree a (function f), written a[n]

(f [n]), by a[0] = a and a[n+1] = a[n]′ (f [0] = f and f [n+1] = f [n]′). A degree a strictly

below 0′ is lown if a[n] = 0[n], and highn if a[n] = 0[n+1]. �

Our strategy for proving the existence of lown and highn degrees, will be as follows:
First we provide degrees aℓ and ah strictly between 0[n] and 0[n+1] such that a′

ℓ = 0[n+1]

a′
h = 0[n+2]. Thereafter we prove that for any degree b strictly between 0[k+1] and 0[k+2],

we can find a degree c strictly between 0[k] and 0[k+1] such that c′ = b.

Theorem 4.7 Let f be a strictly monotone and honest function. Then, there exists an
honest function g such that f <E g and g′ ≡E f ′.

Proof. Let g(x) = f ′f(f ′)−1(x) where (f ′)−1 denotes the inverse of f ′ given by

(f ′)−1(x) = (µi)[f ′(i) ≥ x] .

Since f ′ is strictly monotone, we have (f ′)−1f ′(x) = x and f ′(f ′)−1(x) ≥ x. Furthermore,
we have g(x) = y iff

(∃u, v < y) [ (∀w < u)[f ′(w) < x] ∧ f ′(u) ≥ x ∧ f(u) = v ∧ f ′(v) = y ]

and thus, it is easy to see that the graph of g is elementary. It is also easy to see that g
is monotone and dominates 2x. Hence, g is an honest function.

Now, f(x) ≤ ff ′(f ′)−1(x) ≤ f ′f(f ′)−1(x) = g(x), and for any fixed k and sufficiently
large x, we have

fk(x) ≤ fkf ′(f ′)−1(x)

= fkf (f ′)−1(x)+1((f ′)−1(x)) def. of f ′

≤ fk+(f ′)−1(x)+1(k + (f ′)−1(x))
= f ′(k + (f ′)−1(x)) def. of f ′

< f ′(f(f ′)−1(x)) f(x) ≥ 2x and x is large

= g(x) . def. of g

Hence, we have f <E g by the Growth Theorem.
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Next, we observe that gk(x) = f ′gk(f ′)−1(x) for any k > 0. This is trivially true
when k = 1, and, by an induction hypothesis, we have

gk+1(x) = ggk(x) = gf ′fk(f ′)−1(x) =

f ′f(f ′)−1f ′fk(f ′)−1(x) = f ′fk+1(f ′)−1(x) .

Thereby, g′(x) = gx+1(x) = f ′fx+1(f ′)−1(x) ≤ f ′fx+1(x) = f ′f ′(x), and then we have
g′ ≤E f ′ by the Growth Theorem. Since f <E g, we also have g′ ≡E f ′ by the mono-
tonicity of the jump operator. �

Theorem 4.8 Let f be an honest function. Then, there exists an honest function g such
that g <E f ′ and g′ ≡E f ′′.

Proof. For any i ∈ N, let d3i+1 = f ′′(d3i), let d3i+2 = f ′(d3i+1), and let d3i+3 = f ′(d3i+2).
Let d0 = 0. Furthermore, let

G(x) =

{

f ′(x) if d3i ≤ x ≤ d3i+1 for some i
G(x− 1) otherwise

and let g(x) = max(G(x), f(x)). It is easy to check that g is honest.
First we prove that f ′′ ≡E g′. Observe that for any j ≤ d3i+1 + 1, we have d3i ≤

(f ′)j(d3i) ≤ (f ′)d3i+1(d3i) = f ′′(d3i) = d3i+1. Hence, by the definition of g, we have

f ′′(d3i) = (f ′)d3i+1(d3i) = gd3i+1(d3i) = g′(d3i)(*)

for any i ∈ N. Now, let x be arbitrary and let i be the unique number such that
d3i ≤ x < d3i+3. Then

(g′)4(x) ≥ (g′)4(d3i) as g′ is monotone

= (g′)3f ′′(d3i) (*)

= (g′)3(d3i+1) def. of d3i+1

≥ (g′)(f ′)2(d3i+1) as f(x) ≤ g(x)

≥ (g′)(d3i+3) def. of d3i+3

= f ′′(d3i+3) (*)

≥ f ′′(x) . as f ′′ is monotone

This proves f ′′ ≤ (g′)4, and f ′′ ≤E g′ follows by the Growth Theorem. Moreover, since
g ≤ f ′, we have g ≤E f ′, and thus also g′ ≤E f ′′ by the monotonicity of the jump
operator. This proves that f ′′ ≡E g′.

Next we prove that g <E f ′. It is obvious that g ≤E f ′ since g(x) ≤ f ′(x). Hence,
we are left to prove that f ′ 6≤E g. Assume d3i+2 ≤ x < d3i+3. Then, straightaway form
the definition of g and the sequence {dj}j∈N, we have

g(x) = max(G(x), f(x)) = max(G(d3i+1), f(x)) =

max(f ′(d3i+1), f(x)) = max(d3i+2, f(x)) = max(x, f(x)) = f(x)

that is, g(x) = f(x) holds for any x in the interval d3i+2, . . . , d3i+3 − 1. Let k be an
arbitrary fixed number, and pick any i such that d3i+2 + 1 > k. Then,

d3i+3 = f ′(d3i+2) = fd3i+2+1(d3i+2) > fk(d3i+2) = gk(d3i+2) .
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The last equality holds since we have d3i+2 ≤ f ℓ(d3i+2) < d3i+3 when ℓ ≤ k. This, proves
that for any fixed k there exists x such that f ′(x) > gk(x), and thus the the Growth
Theorem yields f ′ 6≤E g. �

Corollary 4.9 For any n, there exists degrees aℓ and ah strictly between 0[n] and 0[n+1]

such that a′
ℓ = 0[n+1] and a′

h = 0[n+2].

Proof. Let f be an honest function such that deg(f) = 0[n]. By Theorem 4.7, we have
an honest function g0 such that f <E g0 and f ′ ≡E g′0. Let aℓ = deg(g0). Then we

have 0[n] < aℓ < 0[n+1] = a′ℓ. By Theorem 4.8, we have an honest function g1 such

that g1 <E f ′ and f ′′ ≡E g′1. Let ah = deg(g1). Then we have 0[n] < ah < 0[n+1] and

0[n+2] = a′
h. (The monotonicity of the jump operator assures that aℓ < 0[n+1] and that

0[n] < ah.) �

Theorem 4.10 (Jump Inversion) Let f and g0 be honest functions such that f ′ ≤E

g0 ≤E f ′′. Then, there exists an honest function h such that h ≤E f ′ and h′ ≡E g0.

Proof. Since f is honest, we have f ′(x + 1) ≥ 2f ′(x) (and we also have f ′(x) ≥ 2x
x+1).

Furthermore, we can w.l.o.g. assume that we also have g0(x+ 1) ≥ 2g0(x). If this should

not the the case: Then, let g1(0) = g0(0) and g1(x+ 1) = max(2g1(x),max[g0, f
′](x+ 1)).

Then we obviously have max[g0, f
′] ≤ g1. Furthermore, for some u, v ≤ x we have

g1(x) = 2max[g0,f ′](v)
u ≤ 2

max[g0,f ′](x)
max[g0,f ′](x)+1 ≤ max[g0, f

′]max[g0, f
′](x) .

Thus, we have max[g0, f
′] ≡E g1 by the Growth Theorem, moreover, since f ′ ≤E g0, we

have g0 ≡E g1. This shows that we may replace g0 by g1 to ensure that g0(x+1) ≥ 2g0(x).
We define the function g by recursion on its argument x. Let g(0) = g0(0) and let

g(x+ 1) =















f ′′(y + 1)
where y is the least number s.t.
g(x) ≤ f ′′(y) < f ′′(y + 1) < g0(x+ 1)

g0(x+ 1) if such y does not exist.

(Claim I) The function g is honest and
(a) g ≡E g0
(b) g(x) ≤ f ′′(y) ⇒ g(x+ 1) ≤ f ′′(y + 1) for any x, y ∈ N.

It is easy to see that g is an honest function, and Clause (b) of the claim is a
straightforward consequence of the definition of g. We will now argue that g(x + 1) ≤
g0(x+1) ≤ g(2x+1), and thus, Clause (a) follows by the Growth Theorem. It is obvious
that g(x+ 1) ≤ g0(x+ 1). In order to verify that g0(x+ 1) ≤ g(2x+ 1), we observe that
there might, or might not, exist ℓ > 0 and a sequence y0, . . . , yℓ such that

g(x) ≤ f ′′(y0) ≤ f ′′(y1) ≤ . . . ≤ f ′′(yℓ) ≤ g0(x+ 1) ≤ f ′′(yℓ + 1) .

If such a sequence does not exist, we have g(x+ 1) = g0(x+ 1) and thus also g0(x+ 1) ≤
g(2x + 1). If such a sequence exists, we have g(x + i) = f ′′(yi) for y = 1, . . . , ℓ and
g(x + ℓ + 1) ≥ g0(x + 1). Moreover, since g0(z) ≤ f ′′(z) holds for any z, the sequence
y0, . . . , yℓ cannot be very long, indeed, ℓ ≤ x. Hence g0(x+1) ≤ g(x+ℓ+1) ≤ g(x+x+1).
This completes the proof of (Claim I).

For any injection φ, we define the function Iφ by Iφ(x) = max(Sφ(x), 2x) where
Sφ(0) = 0 and

Sφ(x) =

{

φ(i+ 1) if x = φ(i) for some i
Sφ(x− 1) otherwise



The Infinity Project 11

when x > 0. The straightforward proof that Iφ is an honest function whenever φ is an
honest function, is left to the reader. We will prove that I ′

g ≡E g and Ig ≤E If ′′ and
If ′′ ≤E f ′. Our theorem follows from these facts as we have g0 ≡E g by Claim I (a).

(Claim II) For any honest function h where h(x+1) ≥ 2h(x), we have
(a) h(x+ 1) = Ih(h(x))
(b) h(i) ≤ x < h(i+ 1) ⇒ Ih(x) = max(h(i + 1), 2x).

Clause (a) of this claim holds since

Ih(h(x)) = max(Sh(h(x)), 2h(x)) = max(h(x+ 1), 2h(x)) = h(x+ 1)

and Clause (b) follows easily from Clause (a) and the definition of Ih.

We will now prove that I ′
g ≡E g. Since g(x+ 1) ≥ 2g(x), we have g(x) = Ix

g (g(0)) by

Claim II(a). Hence, it is easy to see that there exists fixed m,n such that (I ′
g)

m(x) ≥ g(x)

and gn(x) ≥ I ′
g(x) (recall that I ′

g(x) = Ix+1
g (x)), and thus, the Growth Theorem yields

I ′
g ≡E g.

Next we prove that Ig ≤E If ′′ . By the Growth Theorem, it suffices to prove Ig ≤ I2
f ′′ .

Pick and arbitrary x. If Ig(x) = 2x, we have Ig(x) ≤ I2
f ′′(x) as f ′′ grows sufficiently

fast. Now, assume Ig(x) 6= 2x. Fix the unique i and j such that g(i) ≤ x < g(i+ 1) and
f ′′(j) ≤ g(i) < f ′′(j + 1). Now

I2
f ′′(x) ≥ I2

f ′′(f ′′(j)) as I2
f ′′ is monotone and x ≥ f ′′(j)

= f ′′(j + 2) Claim II (a)

≥ g(i + 1) Claim I (b) and g(i) < f ′′(j + 1)

= Ig(x) . Claim II (b)

This proves Ig ≤E If ′′ .
Finally, we will prove that If ′′ ≤E f ′. Indeed, we will prove something stronger

(given the Growth Theorem), namely that we have Ih′ ≤ h2 for any honest function h

where h(x+ 1) ≥ 2h(x). For such an h, we have

Ih′(h′(x)) = h′(x+ 1) = hx+2(x+ 1) ≤ h2hx+1(x) = h2(h′(x)) .(*)

Claim II assures that the first equality of (*) holds. The remaining relations of (*)
hold trivially. Now, pick any x and fix the unique i such that h′(i) ≤ x < h′(i + 1). If
Ih′(x) = 2x, then Ih′(x) ≤ h2(x) holds trivially. If Ih′(x) 6= 2x, we have Ih′(x) = h′(i+1)
by Claim II (b), and thus

Ih′(x) = h′(i+ 1)

= Ih′(h′(i)) Claim II (a)

≤ h2(h′(i)) (*)

≤ h2(x) . as x ≥ h′(i)

This completes the proof of the theorem. �

Corollary 4.11 Let a be a degree strictly between 0[n+1] and 0[n+2]. Then, there exists
a degree b strictly between 0[n] and 0[n+1] such that b′ = a.

Proof. Let f, g be honest function such that deg(f) = 0[n+1] and deg(g) = a. We can
w.l.o.g. assume that f(x) ≥ 2x

x+1. Now, Theorem 4.10 yields an honest function h such
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that h ≤ f and h′ ≡ g. Let b = deg(h). Then, we have b′ = a, and by the monotonicity
of the jump operator we also have 0[n] < b < 0[n+1]. �

The next corollary follows straightforwardly from Corollary 4.9 and Corollary 4.11.

Corollary 4.12 (Low and High Degrees) For any n ∈ N, there exists a degree which is
lown, and there exists a degree which is highn.

Clause (i) of the next theorem is also proved in [5], whereas (ii) is stated as an open
problem in [5].

Theorem 4.13 (i) For any degrees a and b, we have a′ ∪ b′ ≤ (a ∪ b)′. Moreover,
there exist a and b such that a′ ∪ b′ = (a ∪ b)′, and there exist a and b such that
a′ ∪ b′ < (a ∪ b)′. (ii) For any degrees a and b, we have a′ ∩ b′ = (a ∩ b)′.

Proof. We start by proving (ii). Now, a ≥ a ∩ b holds in any lattice, and thus, by the
monotonicity of the jump operator, we also have a′ ≥ (a ∩ b)′. By the same token, we
have b′ ≥ (a ∩ b)′. Hence, as a′ ∩ b′ is the greatest lower bound of a′ and b′, we have
a′∩b′ ≥ (a∩b)′. We will now prove that a′∩b′ ≤ (a∩b)′ also holds. Let f, g be honest
functions such that a = deg(f) and b = deg(g). We have

min[f ′, g′](x) = min(f ′(x), g′(x))

= min(fx+1(x), gx+1(x)) def. of the jump

≤ min[f, g]2(x+1)(x) Lemma 3.3

≤ min[f, g]min[f,g]′(x)+1+x+1(x)

= min[f, g]min[f,g]′(x)+1 min[f, g]x+1(x)

= min[f, g]min[f,g]′(x)+1(min[f, g]′(x))

= min[f, g]′ min[f, g]′(x)

and thus, by the Growth Theorem, we have min[f ′, g′] ≤E min[f, g]′. This proves a′∩b′ ≤
(a ∩ b)′, and (ii) follows.

We turn to the proof of (i). The proof of a′ ∪ b′ ≤ (a ∪ b)′ (for any degrees a,b) is
symmetric to the proof of a′ ∩b′ ≥ (a∩b)′ given above. Furthermore, it is obvious that
there exists degrees a,b such that a′ ∪b′ = (a∪b)′. The existence of a and b such that
a′ ∪ b′ < (a ∪ b)′ is a consequence of the following claim.

(Claim) For any degree c ≥ 0′, there exist degrees a and b such that
c = a ∪ b = a′ = b′.

By this claim, we have degrees a,b, c such that

a′ ∪ b′ = c ∪ c = c < c′ = (a ∪ b)′ .

To prove the claim, let c be a degree above 0′, and let f be an honest function such
that deg(f ′) = c. Such a f exists by Theorem 4.10. Define the sequence {di}i∈N by
d0 = 0 and di+1 = f ′(di); define the functions G and H by G(0) = H(0) = 0 and, for
x > 0, by

G(x) =

{

f ′(x) if x = d2i for some i
G(x− 1) otherwise

H(x) =

{

f ′(x) if x = d2i+1 for some i
H(x− 1) otherwise
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and, finally, let g(x) = max(f(x), G(x)) and h(x) = max(f(x),H(x)). It turns out that
the claim holds when a = deg(g) and b = deg(h). The proof that this indeed is the case
is nontrivial, and the details can be found in [5]. �

An intermediate degree is a degrees below 0′ that, for any n ∈ N, are neither lown nor
highn. We conclude this section by a theorem stating the existence of an intermediate
degree.

Theorem 4.14 There exists a degree a such that, for any n ∈ N, we have 0[n] < a[n] <

0[n+1].

Proof. Let f(x) = 2x. Define the sequence {di}i∈N by d0 = 0 and di+1 = f [di](di); define
the function G by G(0) = 0 and, for x > 0, by

G(x) =

{

f ′(x) if d3i ≤ x < d3i+1 for some i
G(x− 1) otherwise

and let g(x) = max(f(x), G(x)). Now, g is an honest function, and f ≤ g ≤ f ′. By the
Growth Theorem, we have

0 = deg(f) ≤ deg(g) ≤ deg(f ′) = 0′ .

By the monotonicity of the jump operator, we have 0[n] ≤ deg(g)[n] ≤ 0[n+1] for any

n ∈ N. It remains to prove that deg(g)[n] 6≤ 0[n] and 0[n+1] 6≤ deg(g)[n]. The details can
be found in [7]. �

5 On cupability and capability

Definition 5.1 A degree a cups (up) to a degree b if there exists c such that c < b and
a ∪ c = b. A degree a caps (down) to a degree b if there exists c such that b < c and
a ∩ c = b.

Next we define the binary relation ≪ on honest functions. A function ρ : N×N → N

is a universal for an honest degree a = deg(f) if for every ξ : N → N such that ξ ≤E f , we
have ξ(x) = ρ(n, x) for some n ∈ N. The relation f ≪ g holds if there exists a universal
function ρ for the degree deg(f) such that ρ ≤E g. We will also use ≪ to denote the
corresponding relation on honest degrees. �

The situation a ≪ b implies that a < b, but there exist degrees a,b such that a < b
and a 6≪ b. The next lemma gives a characterisation of the ≪-relation.

Lemma 5.2 Let g and f be honest functions. Then (1) and (2) are equivalent.

(1) g ≪ f

(2) there exists m such that, for any k, we have we have gk(x) < fm(x) for all but
finitely many x.

Proof. To prove this lemma, we need a refined version of the Kleene Normal Form The-
orem. We assume the reader is familiar with the computable functions, indexes for
computable functions, computation trees and other well-known concepts in computabil-
ity theory. When e is an index for the computable function f , we adopt the traditional
abuse of notation and write {e}(~x) both for (i) the computation of f(~x) associated with
e and for (ii) the eventual result of the computation. Let U be a function such that
U(〈x1, . . . , xm〉) = xm, i.e. a function giving the last coordinate of a sequence number.
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Let T be the Kleene predicate, i.e. the predicate T (e, 〈x1, . . . , xn〉, t) holds iff t is a com-
putation tree for {e}(x1, . . . , xn). The relation T is elementary, so is the function U , and
for each total computable function φ we have

φ(x1, . . . , xn) = {e}(x1, . . . , xn) = U(µz[T (e, 〈x1, . . . , xn〉, z)])

when e is a computable index for φ.

Claim (Normal Form Theorem). An n-ary function ψ is elementary
in an honest function f iff there exist a recursive index e for ψ and a
fixed number k such that

{e}(x1, . . . , xn) = U(µy ≤ fk(max(x1, . . . , xn))[T (e, 〈x1, . . . , xn〉, y)]) .

We sketch a proof of this claim: Assume

ψ(~x) = {e}(~x) = U(µy ≤ fk(max(~x))[T (e, 〈~x〉, y)]) .

The predicate T is elementary, and U and max are elementary functions. The elementary
functions are closed under composition and the bounded µ-operator. Thus, ψ is elemen-
tary in f . To prove the other direction of the equivalence, assume that ψ is elementary
in the honest function f . Then, ψ can be build from the functions 0,S,In

i ,max and f

by composition and bounded primitive recursion. Complete the proof of the claim by
induction on such a build-up of ψ. (The details can be found in [6].)

We will now turn to the proof of the lemma. Fix m such that, for any k, we have
gk(x) < fm(x) for all but finitely many x. Then, for every k, there exists nk ∈ N such
that

gk(x) < nk + fm(x)(*)

holds for all x. Let ξ be any unary function elementary in g. By the claim we have an
index e for ξ, an elementary predicate T1, an elementary function U and a fixed ℓ ∈ N

such that

ξ(x) = U((µt ≤ gℓ(x))[T1(e, x, t)]) .

By (*), we have nℓ ∈ N such that

ξ(x) = U((µt ≤ gℓ(x))[T1(e, x, t)]) = U((µt ≤ nℓ + fm(x))[T1(e, x, t)]) .

Let ρ(〈e, n〉, x) = U((µt < n+ fm(x))[T1(e, x, t)]). Then, we have ρ ≤E f , and for every
unary function ξ elementary in g, there exists n such that ξ(x) = ρ(n, x). This proves
that (1) implies (2).

Assume g ≪ f . Then, there exists a function ρ such that ρ is a universal function
for deg(g) and ρ ≤E f . Let ψ(x) = (maxi≤x maxj≤x ρ(i, j)) + 1. Then, we have ψ ≤E f ,
and hence, there exists m such that ψ(x) ≤ fm(x). It is easy to see that for any unary
function φ elementary in g, we have φ(x) < ψ(x) ≤ fm(x) for all but finitely many x.
Thus, for any k, as gk ≤E g, we have gk(x) < fm(x) for all but finitely many x. This
proves that (2) implies (1). �

The next theorem was proved for the first time in [8].

Theorem 5.3 If 0 ≪ a < b, then a cups to b.

Proof. Let f and g be honest functions such that deg(f) = a, and deg(g) = b, and
f ≤ g. Define the sequence {di}i∈N by d0 = 0; d2i+1 = g(d2i); and d2i+2 = f(d2i+1).
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Furthermore, define the function h by h(x) = max(H(x), 2x) where H(0) = 0 and, for
x > 0

H(x) =

{

g(x) if x = d2i for some i
H(x− 1) otherwise.

It is possible to prove that h is an honest function such that max[f, h] ≡E g and g 6≤E h.
The details can be found in [8]. �

We have tried hard to strengthen Theorem 5.3 by proving that a cups up to b whenever
0 < a < b. We have not succeeded, and thus it remains an open problem if there exist
degrees other than 0 that do not cup up to degrees above them. However, with a possible
exceptions of some degrees not being ≪-above 0, any degree cups up to any degree above
it, and thus, “cups up to” is a not a very restrictive relation. We will see that the relation
“caps down to” is a far more restrictive.

Lemma 5.4 Let g, f be honest functions such that f caps to g and g ≤ f . Then, there
exist a fixed c ∈ N such that for each k, we have fk(x) ≤ gck(x) for infinitely many x.

Proof. Since f caps to g we have an honest h such that min[f, h] ≤E g. By the Growth
Theorem, we can fix a c ∈ N such that min[f, h] ≤ gc. Now, as min[f, h] and g are
monotone, we also have min[f, h]k ≤ gck (for any k). Moreover, as we have assumed
g ≤ f , we have min[f, h]k ≤ gck ≤ f ck (for any k). As f caps to g by h, we have
h 6≤E f , and thus, by the Growth Theorem, for any c, k ∈ N we have infinitely many
values x0, x1, x2, . . . such that f ck(xi) < h(xi). For each xi of these values, we have

min[f, h]k(xi) ≤ gck(xi) ≤ f ck(xi) < h(xi) .(*)

This entails that min[f, h]k(xi) = fk(xi). If not, (*) yields a contradiction. Thus, (*)
entails that fk(xi) ≤ gck(xi) for each xi in the sequence x0, x1, x2, . . .. �

Theorem 5.5 If a ≪ b, then b does not cap to a.

Proof. Assume that deg(g) = a ≪ b = deg(f) and that b caps to a. We can w.l.o.g.
assume g ≤ f . Since a ≪ b, Lemma 5.2 yields a fix m such that for any k, we have
gk(x) < fm(x) for all but finitely many x. Since b caps to a, Lemma 5.4 yields a
fixed c such that for each k, we have fk(x) ≤ gck(x) for infinitely many x. This is a
contradiction. �

It is natural to ask whether the converse of Theorem 5.5 also holds, that is, do we have
a ≪ b if, and only if, b does not cap to a? (This was stated as an open problem in [7].)
The next theorem gives a negative answer to this question.

Theorem 5.6 There exist degrees a < b such that b does not cap to a even if we have
a 6≪ b.

Proof. Let f be an honest function such that f(x) ≥ 2x
x. We will construct an honest

function g and prove the two following claims.

(Claim I) For any m, we have gm2
(x) = fm(x) for infinitely many x.

(Claim II) For any m, we have gm2
(x) < f3m+1(x) for all but finitely

many x.

Let ν(k) equal 1 plus the exponent of 2 in the prime factorisation of k + 2. Thus, ν
is an elementary function. (Any elementary function φ such that the set {x | φ(x) = n}
is infinite for all n > 0, could replace ν in this proof.) For each k ∈ N, we will define a
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sequence dk,0 < dk,1 < . . . < dk,ν(k)2 . Moreover, for each k, we will have dk,ν(k)2 < dk+1,0.

Let d0,0 = 0. For each j ∈ {1, . . . , ν(k)2}, let

dk,j =

{

f(dk,j−ν(k)) if ν(k) divides j

2dk,j−1 otherwise

and let dk+1,0 = f ′(dk,ν(k)2). Furthermore, let

G(x) =

{

dk,i+1 if dk,i ≤ x < dk,i+1 for some k, i
dk,ν(k)2 if dk,ν(k)2 ≤ x < dk+1,0 for some k, i

and let g(x) = max(2x, G(x)). This completes the construction of g. The reader should
note the following properties of g (and f):

(P1) g(dk,i) = dk,i+1 for any k and any i < ν(k)2

(P2) for any k and any i < ν(k)2, we have g(dk,i) = f(dk,i) if ν(k) divides i

(P3) for any k and any i < ν(k)2, we have g(dk,i) = 2dk,i if ν(k) does not divide i

(P4) gν(k)2(dk,0) = dk,ν(k)2 = f ν(k)(dk,0) for any k

(P5) for any m, we have gm(dk,ν(k)2) = 2
d

k,ν(k)2

m < dk+1,0 for all but finitely many k.

These five properties is more or less straightforward consequences of the construction of
g, in particular, to see that (P5) holds, note that dk+1,0 = f ′(dk,ν(k)2) and f(x) ≥ 2x

x.

(Claim I) follows straightaway from (P4). For any m we have gm2
(dk,0) = fm(dk,0)

for each of the infinitely many k’s such that ν(k) = m. We turn to the proof of (Claim
II). The proof splits into the two cases: the case when x lies in an interval of the form
dk,0, . . . , dk,ν(k)−1, and the case when x lies in an interval of the form dk,ν(k), . . . , dk+1,0−
1.

We will first prove that we have gm2
(x) < f3m+1(x) when x is sufficiently large and

lies in an interval of the form dk,0, . . . , dk,ν(k) − 1. The proofs splits into the the two
sub-cases m ≥ ν(k) and m < ν(k). First, assume that m ≥ ν(k). We have

f3m+1(x) = f (3m+1)−ν(k)f ν(k)(x)

≥ f (3m+1)−ν(k)f ν(k)(dk,0) f is monotone

= f (3m+1)−ν(k)(dk,ν(k)2) (P4)

> f(dk,ν(k)2) as m ≥ ν(k)

≥ 2
d

k,ν(k)2

d
k,ν(k)2

as f(x) ≥ 2x
x

≥ 2
d

k,ν(k)2

m2 x is large

= gm2
(dk,ν(k)2) (P5) and x is large

≥ gm2
(x) . g is monotone

Next, assume that m < ν(k). Fix the unique i such that dk,i ≤ x < dk,i+1. Since
m < ν(k), there will be at most one number j in the interval i, . . . ,min(i + m, ν(k)2)
such that ν(k) divides j. Hence, by (P2), (P3) and (P5), there exist m0,m1 such that

gm(x) ≤ 2
f(2x

m1
)

m0 ≤ f3(x) .(†)
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Furthermore, g is monotone and x ≤ dk,ν(k)2, and then, by (P5), we have

gm2
(x) ≤ gm2

(dk,ν(k)2) < dk+1,0(‡)

for all but finitely many x. It follows from (†) and (‡), we have gm2
(x) < f3m+1(x) for

all sufficiently large x.

The reader is invited to verify that we also have gm2
(x) < f3m+1(x) for sufficiently

large x lying in intervals of the form dk,ν(k), . . . , dk+1,0 − 1. To verify this, note that for
any x in such an interval we have g(x) = 2x whereas f(x) ≥ 2x

x. This completes the
proof of (Claim II).

We will briefly now argue that g is honest an honest function. The function f is
honest by assumption. First we argue that dk,j = x is an elementary relation in k, j, x.
Let a | b denote the relation “a divides b”. This relation is elementary. We have

dk,j = x ⇔
(

j 6= 0 ∧ ν(k) | j ∧ ∃x0 < x [ dk,j−ν(k) = x0 ∧ f(x0) = x ]
)

∨

( j 6= 0 ∧ ¬ ν(k) | j ∧ ∃x0 < x [ dk,j−1 = x0 ∧ 2x0 = x ] ) ∨
(

j = 0 ∧ ∃x0 < x [ dk,ν(k)2 = x0 ∧ 2x0 = x ]
)

∨

( k = 0 ∧ j = 0 ∧ x = 0 ) .

This can be viewed as a recursive definition of dk,j = x. All the functions, relations and
operations involved are elementary. Thus, we have defined the relation dk,j = x by a
recursion scheme of the form

R(k, j, x) ⇔ φ(R(k0, j0, x0), R(k1, j1, x1), R(k2, j2, x2))

where φ is an elementary predicate and k0, k1, k2 ≤ k; j0, j1, j2 ≤ k; and x0, x1, x2 ≤ x.
The elementary predicates are closed under such a recursion scheme, and hence, dk,j = x

is an elementary relation. Thus, ∃k, j ≤ x[dk,j = x] is an elementary predicate. Once
we have realised that this predicate is elementary, it becomes easy to see that g has
elementary graph. Obviously, g is monotone and dominates 2x. Thereby, g is honest.

We will now prove the theorem. We have g ≤E f by the Growth Theorem since
g ≤ f . Let m be any number. Pick x such that x > m and x = dk,ν(k)2 for some k.
By (P5), we have gm(x) = 2x

m < 2x
x ≤ f(x). Hence, we have f 6≤E g by the Growth

Theorem. This proves g <E f . (Claim I) says that for any m there exist infinitely many

x such that gm2
(x) = fm(x). This entails that there cannot exist a fixed number n such

that we for any m have gm(x) < fn(x) for all but finitely many x. Thus, we have g 6≪ f

by Lemma 5.2. Finally, (Claim II) and Lemma 5.4 entail that f does not cup to g, and
then, our theorem holds when a = deg(g) and b = deg(f). �

6 Controllable irreducibility and the pendulum theorem

Definition 6.1 A sequence of natural numbers {di}i∈N is elementary if the the relation
di = y is elementary. An honest function f is controllably irreducible to a an honest
function g if there exists an elementary sequence d0 < d1 < d2 < . . . such that for any k
we have gk(di) < f(di) for all but finitely many i. �

In the next theorem we assume that a function f is controllably irreducible to a function
h. We do not know how to prove this theorem if we only assume that f is irreducible to
h.
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Theorem 6.2 (Pendulum) Let f, g and h be honest functions such that f is controllably
irreducible to h and g <E f ≤E g′. Then there exists an honest function g0 such that (i)
g <E g0 <E f (and f is controllably irreducible to g0), (ii) g0 6≤E h and (iii) g′0 ≡E g′.

Proof. Let e0 < e1 < e2 < . . . be an elementary sequence such that for any k we have
hk(ei) < f(ei) for all sufficiently large ei. Such a sequence exists since f is controllably
irreducible to h. We construct the sequence d0 < d1 < d2 < . . . by letting d0 = 0 and
di+1 = ej where where ej is the least element in the sequence e0 < e1 < e2 < . . . such
that

g′g′g′(di) < ej ∧ ∃y ≤ ej∃x ≤ y [ f(x) = y ∧ gi(x) < y ] .

The sequence {di}i∈N is well defined as f 6≤E g, and by the Growth Theorem, for each
i there exists infinitely many x such that gi(x) < f(x). Moreover, the sequence is
elementary as di+1 is defined from di by elementary operations.

Let g0(x) = max(Sf (x), g(x)) where Sf (0) = 0 and

Sf (x) =

{

f(x) if x = di for some i
Sf (x− 1) otherwise

when x > 0. Since that f and g are honest and {di}i∈N is elementary, it is straightforward
to verify that that g0 is an honest function.

We will first prove that Clause (i) of the Theorem holds. Since g <E f , we can
w.l.o.g. assume that g(x) ≤ f(x). This entails that we also have g0(x) ≤ f(x), and thus,
g0 ≤E f follows by the Growth Theorem. Moreover, we have constructed g0 such that
we for each k have infinitely many x such that gk

0 (x) < f(x), and thus, again by the
Growth Theorem, we have f 6≤E g0. This proves that g0 <E f . Obviously, we also have
g <E g0. Thus, (i) holds.

It is easy to prove that (ii) holds. In order to see that g0 6≤E h, just observe that
for any k we have g0(di) = f(di) > hk(di) for all but finitely many di, and then, use the
Growth Theorem. This completes the proofs of (ii).

(Claim) Let g′(di) ≤ x ≤ g′g′(di). Then, gy
0(x) = gy(x) whenever

y ≤ x.

It should not be hard to see that this claim holds: Observe that

(a) g0(z) = g(z) for any z in the interval g′(di), . . . , di+1 − 1
(b) gy(x) < g′(x) < g′(g′g′(di)) ≤ di+1.

The claim follows easily from (a) and (b).
Next we prove that g′0(x) ≤ g′g′g′(x). Pick an arbitrary x and fix i such that

di ≤ x < di+1. There exists a maximal number z such that z ≤ x+ 1 and

g′0(x) = gx+1
0 (x) = g

(x+1)−z
0 gz(x) .

If z = x + 1, then g′0(x) ≤ g′g′g′(x) holds trivially. Assume z < x + 1. Now, z < x + 1
implies that di+1 ≤ gz(x). This is easily verified by inspecting the definition of g0.
Furthermore, note that we can assume that f(x) ≤ g′(x). There will be no loss of
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generality to assume this as f ≤E g′. We have

g′0(x) = g
(x+1)−z
0 gz(x)

= gx−z
0 g0g

z(x)

= gx−z
0 max(Sf (gz(x)), ggz(x)) def. of g0

≤ gx−z
0 max(f(gz(x)), ggz(x)) def. of Sf

≤ gx−z
0 max(f(g′(x)), g′(x)) def. of g′ and z ≤ x

≤ gx−z
0 g′g′(x) . since f(x) ≤ g′(x)

This proves that g′0(x) ≤ gx−z
0 g′g′(x) for some z ≤ x such that di+1 ≤ gz(x). We also

have g′(di+1) ≤ g′gz(x) ≤ g′g′(x) ≤ g′g′(di+1), and hence, g′0(x) ≤ g′g′g′(x) follows by
(Claim).

This proves that g′0(x) ≤ g′g′g′(x) holds for any x. By the the Growth Theorem, we
have g′0 ≤E g′. Furthermore, it is easy to see that g ≤E g0, and hence, we have g′ ≤E g′0
by the monotonicity of the jump operator. Thus, g0 ≡E g. This completes the proof of
(iii). �

Before we investigate the notion of controllable irreducibility further, we will discuss
what it should mean for a degree to be controllably irreducible to another degree: The
Growth Theorem entails that if f is controllably irreducible to g, then f is controllably
irreducible to any h elementary in g. So we can say that f is controllably irreducible
to deg(g) if f is controllably irreducible to some, or equivalently all, representative(s) in
deg(g). The same cannot be said when replacing f by its degree. This motivates the
next definition.

Definition 6.3 A degree a is controllably irreducible to a degree b when some function
in a is controllably irreducible to some, or equivalently all, function(s) in b. A degree a is
not controllably irreducible to a degree b when no function in a is controllably irreducible
to some, or equivalently all, function(s) in b. A degree b is slightly above a degree a
when a < b and b is not controllably irreducible to a. �

The next theorem entails that if there exists one degree that is slightly above a degree
a, then there will be a lot of degrees slightly above a.

Theorem 6.4 Let b be slightly above a, and let a ≤ ci ≤ b for i = 1, 2. Then, c2 cannot
be controllably irreducible to c1.

Proof. Assume that c2 is controllably irreducible to c1 = deg(g). Then, there exist
f ∈ c2 and and elementary sequence d0 < d1 < d2 < . . . such that for any k we have
gk(di) < f(di) for all but finitely many i. Let a = deg(h1) and b = deg(h2). We can
w.l.o.g. assume that h1 ≤ g and f ≤ h2, and then, for any k, we have hk

1(di) < h2(di) for
all but finitely many i. This contradicts that b is slightly above a. �

The next theorem requires proof techniques based on enumerations and diagonalisations.
This is the first result we prove on the structure of honest elementary degrees that require
such techniques.

Theorem 6.5 There exists a degree that is slightly above 0.

Proof. We will construct an honest function f such that deg(f) is not controllably ir-
reducible to 0 = deg(2x). We have to prove that no function in deg(f) is controllably
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irreducible to 2x. By the Growth Theorem, it is sufficient to prove that no finite iterate
of f is controllably irreducible to 2x. Besides, we have to prove that f is not elementary,
that is, we have to prove that no fixed iterate of 2x dominates f .

Thus, on the one hand, f will have to grow somewhat fast: at some point it must
be greater than any given iterate of 2x. On the other hand, we must make certain that
no elementary sequence d0 < d1 < d2 < . . . is a witness to the undesired controlled irre-
ducibility. That involves diagonalising against all such possible sequences. Furthermore,
this diagonalisation must work for all finite iterations of f .

To improve the readability, we will throughout this proof use the notation 2x(y) in
place of 2y

x.
We need a master list of sequences d0 < d1 < d2 < . . .. There is no good elementary

listing of all such total sequences, but there is one if we allow for partial (finite) sequences,
as follows. Let t0, t1, t2 . . . be a listing of all elementary functions in two variables induced
by using some primitive recursive coding of the base functions and operations allowed in
the definition of elementarity. There is no universal elementary function for this listing;
that is, the relation ti(x, y) = z is not elementary. However, because of the simplicity of
the coding, one can code a particular computation as an integer and use that the relation

q bounds a witness that ti(x, y) = z

is elementary. For every elementary sequence d0 < d1 < d2 < . . . there is an i such
that ti(x, y) is the characteristic function of the relation dx = y. In the other direction,
given i and q, it is elementary to see whether ti looks like the characteristic function of
such a sequence when considering only witnesses beneath q. If ti is not the characteristic
function of such a sequence, then eventually there will be a witness beneath q showing
that. Let Ti be the sequence so induced by ti, either an infinite sequence d0 < d1 < d2 <

. . . if ti is a good characteristic function, or a finite sequence if not. We will have to
diagonalise against Ti if it is total without knowing whether it is total.

We now define a function f as follows. At stage n we will define f on the nth interval
In = [xn, xn+1). To start, put I0 = {0}, and f(0) = 2. We use an auxiliary function
L(n) ⊆ n, which tells us at stage n+ 1 which Ti’s (for i < n) do not need to be attended
to. (One problem is that some Ti might always demand attention. Once it gets attended
to, it gets put on the list L, allowing other requirements to be met. It will eventually be
taken off the list and, if it remains active, will then be attended to again.) To start, put
L(0) = ∅. Suppose inductively that we have defined the set L(n − 1) and the function
f up to xn. We will define In (i.e. determine xn+1), and f on In, and L(n), in several
steps. First consider Jn,0 = [xn, 2n(xn)] (the first sub-interval of In). We would like to
pick a Ti to work on, if possible. So consider all j < n not in L(n − 1) for which some
z ∈ Jn,0 is in the range of Tj . Choose the pair j, z for which y = 2j(z) is less than
2n+1(xn), bounds a witness that z is in the range of Tj , and is the minimal such number;
if there are several choices giving the same value, pick the one with j minimal. We call
this value of j the active index for the interval In. Then we put f(x) = max(y, 2x)
on [xn, 2n(xn)]. The outcome of this action is that f grows reasonably fast (at least as
fast as 2j) from xn to that z, and no faster than that afterwards for a while. We set
L(n) = (L(n−1)∪{j})\{0, . . . , j−1}: since j just got attended to, it can be ignored for
a while, yet allows smaller requirements to receive attention. If no such pair j, z exists,
we put f(x) = 2n+1(xn) on Jn,0.

Now we need to consider iterations of f , and make sure that they grow slowly. We
will define Jn,k and Xk inductively on k. Jn,0 is already defined; let X0 = {0, . . . , n− 1}.
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Suppose we have already defined the interval Jn,k−1 = [xn,k−1, xn,k) and f on Jn,k−1.
Then we put Jn,k = [xn,k, 2n(xn,k)) and set f(x) = 2x on this interval. If there exists
some i ∈ Xk−1 such that Ti has a value in Jn,k−1, then we put Xk = Xk−1\{i}. For some
k there will be so such i (as X0 is finite and the X-sequence is monotonically shrinking).
When that happens, put xn+1 = xn,k+1. That completes stage n.

This completes the definition of f . To complete the proof of the theorem, we will
prove that

(1) f is honest
(2) f is not elementary
(3) no function in deg(f) is controllably reducible to a function in 0.

First we prove (1). We obviously have f(x) ≥ 2x for every x. Furthermore, each
interval In contains one subinterval [xn, q] (namely for q = 2j−1(z)), on which f is
constant and equal to 2q, and one subinterval [z+ 1, xn+1], on which f equals 2x. Hence
in the interior of each In f is non-decreasing. Finally f(xn+1 − 1) = 2xn+1−1 < 2xn+1 ≤
f(xn+1), hence f is globally non-decreasing. It remains to show that the graph of f is
elementary. The auxiliary function L can be encoded into integers up to 2n, so for a given
x we can decide what kind of interval x is in, and which values j ∈ {1, . . . , n}\L(n−1) are
possible. In particular for each x we can compute the value xn for which xn ≤ x < xn+1,
and it suffices to compute f(xn) from these data. This is possible because we have
f(xn) = y iff

(∃j ≤ n)(∃ξ, ζ < y)[ j 6∈ L(n− 1) ∧ tj(ξ, ζ) = 1 ∧ 2j(ζ) = y ] ∧

(∀y′ < y)¬(∃j ≤ n)(∃ξ, ζ < y)[ j 6∈ L(n− 1) ∧ tj(ξ, ζ) = 1 ∧ 2j(ζ) = y ] .

Hence, the graph of f is elementary. This proves that f is an honest function.
We turn to the proof of (2). We have to show that for every k there exists some

x, such that f(x) > 2k(x). For this it is sufficient to show that for every k there exists
some ℓ > k such that ℓ is active in some interval In. There are infinitely many simple
ways to describe the function x 7→ 2x, so choose some term tℓ describing this function
with ℓ > k such that 2ℓ(x) bounds a witness that Tℓ(x) = 2x. The range of Tℓ intersects
each of the intervals Jn,0. Hence, if neither ℓ nor any j > ℓ is active for any n, then for
every n some j < ℓ is active. Then in each step some integer is added to L(n), while
some smaller integers are removed. Eventually every integer less than ℓ is either in L(n)
or never active. (In some detail, if ℓ− 1 is ever active, it will be put onto L(n) and never
removed, while if ℓ−1 is never active then that’s fine too. Once ℓ−1 is settled, continue
to the stage, if any, when ℓ− 2 is active. Iterate. Since ℓ is finite, this eventually halts.)
At that point there is nothing stopping ℓ from being active, which is what we wanted to
show. This proves that f is not an elementary function.

We will now prove (3). By the Growth Theorem, it suffices to show the following
claim:

(*) Let ℓ ∈ N. Then there does not exist an elementary sequence
d0 < d1 < d2 < . . . such that for any k we have f ℓ(dm) > 2k(dm) for
all but finitely many m.

Now, for every elementary sequence d0 < d1 < d2 < . . ., we have Ti() = d for some i.
Thus, by (*), it suffices to show the following claim:

(**) Let ℓ ∈ N, and let Ti be total. Then there exists a k such that we

have f (ℓ)(Ti(m)) ≤ 2k(Ti(m)) for infinitely many m.
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The proof of (**) splits into two cases.
Case I: Ti(m) ∈ Jn, with  > 0 for infinitely many m. Then, for n > i we have that

such an interval Jn, is not the last interval in the chain Jn,0, . . . , Jn,k. Hence f(x) = 2x

holds true on [Ti(m), 2n(Ti(m))], and for n > ℓ we have f ℓ(Ti(m)) = 2ℓ(Ti(m)).
Case II: not Case I. Then, Ti(m) ∈ Jn,0 for all but finitely many m. If i is active

infinitely often, then for the witness z = Ti(m) to this we have f(Ti(m)) = 2i(Ti(m)),
and f (ℓ)(Ti(m)) = 2i+ℓ−1(Ti(m)) for i+ ℓ ≤ n, which suffices. If not, then i is active only
finitely often. Once i is no longer active, it is never added to L(n), but it is eventually
removed from L(n) (by the proof that f is not elementary). Once that happens, for each
interval Jn,0 containing a value Ti(m), i was not active because of some pair j, z with

2j(z) ≤ 2i(Ti(m)). But then again we have f (ℓ)(Ti(m)) ≤ 2i+ℓ−1(Ti(m)) for i+ ℓ ≤ n.
This completes the proof that no function in deg(f) is controllably reducible to a

function in 0. �

Corollary 6.6 (i) There exist degrees a and b such that a is not controllably irreducible
to b and vice versa. (ii) Any countable partial ordering can be embedded in the degrees
slightly above 0.

Proof. By Theorem 6.5 and the Density-Splitting Theorem, we have a degree a slightly
above 0 and two incomparable degrees b1,b2 such that 0 < bi < a (for i = 1, 2). By
Theorem 6.4, b1 will not be controllably irreducible to b2, and b2 will not be controllably
irreducible to b1. This proves (i).

Furthermore, we know any countable partial ordering can be embedded between two
degrees a and b whenever a < b. Thus, (ii) follows from Theorem 6.5 and Theorem
6.4. �

7 A Σ1-complete first-order theory

In this section we give a first-order theory for deriving theorems on honest elementary de-
grees. We will prove that this theory is powerful enough to derive any true Σ1-statement,
that is, any true statement in the form ∃x1, . . . , xnA where A is a quantifier-free and does
not contain other variables than x1, . . . , xn. The reader should be aware that the proofs
in this section may be a bit sketchy.

Definition 7.1 Let

a ∪ b = c ≡ a ≤ c ∧ b ≤ c ∧ ∀d [ a ≤ d ∧ b ≤ d → c ≤ d ]

and let
a ∩ b = c ≡ a ≥ c ∧ b ≥ c ∧ ∀d [ a ≥ d ∧ b ≥ d → c ≥ d ] .

Furthermore, let a | b ≡ a 6≤ b ∧ b 6≤ a and a < b ≡ a ≤ b ∧ a 6= b.
Let L be the first-order language {≤, ·′, 0}, and let T be an L-theory which in addition

standard axioms stating that ≤ is a partial ordering, contains the following axioms:

• ∀a [ 0 ≤ a ] (Bottom Element)
• ∀a, b [ a ≤ b→ a′ ≤ b′ ] (Monotonicity)
• ∀a [ a 6= a′ ] (Strictness)
• ∀a, b∃c [ a ∪ b = c ] and ∀a, b∃c [ a ∩ b = c ] (Lattice)
• ∀a, b, c [ a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ b) ] (Distributivity)
• ∀a, b [ a < b → ∃c1, c2 [ c1 | c2 ∧ c1 ∩ c2 = a ∧ c1 ∪ c2 = b ] ] (Density)
• ∀a∃b [ a < b ∧ b′ = a′ ] (Low Degrees)
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• ∀a∃b [ b < a′ ∧ b′ = a′′ ] (High Degrees)
• ∀a, b [ a′ ≤ b ≤ a′′ → ∃c [ c ≤ a ∧ c′ = b ]] (Jump Inversion)
• ∀a, b, c [ a < b ≤ a′ ∧ b 6≤ c → ∃d [ a < d < b ∧ d′ = a′ ∧ d 6≤ c ]] (Pendulum)
• ∀a, b[a′ ∩ b′ = (a ∩ b)′].

�

Note that ∩ and ∪ are not symbols of the language L, but all the axioms can be reduced
to first-order statements over L in an obvious way. That ∩ distributes over ∪, that is
a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ b), follows from the axioms, see Birkhoff [1].

Definition 7.2 A sublattice L of a jump lattice is complete when

a, b ∈ L ∧ a′ < b ⇒ a′ ∈ L .

A lattice L is connected if for any two elements x, y ∈ L there exists a sequence of
elements z1, . . . , zk ∈ L such that

• x = z1 and y = zk
• zi < zi+1 or zi > zi+1 (for i ∈ {1, . . . , k − 1})

�

Lemma 7.3 Let L be a finite complete and connected sublattice of a jump lattice which
is a model of T . There exists a homomorphism L → N where the jump in N is the
successor function.

Proof. If L is a complete connected lattice containing n points, then we can enumerate
the points of L as ℓ1, . . . , ℓn such that {ℓ1, . . . , ℓk} is a complete and connected lattice for
all k ≤ n: choose ℓ1 arbitrarily, and choose jumps or jump inverses of existing elements
whenever this is possible.

We prove the lemma by induction on the number of elements in L. Suppose that L
is a complete sublattice together with a homomorphism ϕ : L → N, and let ℓ be some
point not occurring in L. If ℓ is neither the jump of an element in L, nor is ℓ′ ∈ L, then
we define ϕ(ℓ) to be the maximum of {ϕ(x) : x < ℓ}. Thus we have ϕ(ℓ) ≥ ϕ(x) for all
x < ℓ. Since < is transitive, this also implies ϕ(ℓ) ≤ ϕ(x) for all x > ℓ.

If ℓ′ ∈ L, we put ϕ(ℓ) = ϕ(ℓ′) − 1. If this happen to be negative, we just increase all
values of ϕ by 1. As L is a complete lattice, there are no elements x ∈ L with x < ℓ.
Suppose that x > ℓ. Then x′ > ℓ′, hence ϕ(x′) ≥ ϕ(ℓ′), and therefore ϕ(x) ≥ ϕ(ℓ). A
similar argument applies if there is some x ∈ L with x′ = ℓ. �

Lemma 7.4 Let L be any model of T . Let L be a finite lattice, and let a, b, c1, . . . , cn
elements of L such that a < b ≤ a′ and b | ci for i = 1, . . . , n. Then, there exists an
embedding ψ : L→ L such that for any x ∈ ψ(L) we have

• a < x < b

• x | ci for i = 1, . . . , n
• x′ = a′.

Proof. To prove this lemma, we must use that L satisfies the Pendulum Axiom and the
Density Axiom. We omit the details. �

Lemma 7.5 Let L be a finite jump lattice which is contained in a model of T , and let L

be an arbitrary model of T . Then there exists an embedding ψ : L→ L.



24 Honest elementary degrees

Proof. We can w.l.o.g. assume that the lattice L is complete and connected. Let ϕ be
the homomorphism given by Lemma 7.3, and assume that n = max{ϕ(a) | a ∈ L}.
Furthermore, let L(k) = {a ∈ L | ϕ(a) = k}. We will call L(k) the kth level of L. We
can w.l.o.g. that there is only one element of level L(n) and that each element of level k
jumps to an element of level k + 1, that is, for each a ∈ L(k) there exists b ∈ L(k + 1)
such that a′ = b.

We will construct the embedding ψ : L → L level by level. First we construct
ψ : L(n) → L, then we construct ψ : L(n− 1) → L, and so on. There is only one degree

a at level n, let ψ(a) be an arbitrary degree strictly between 0[n] and 0[n+1].
Assume that we have constructed ψ : L(k + 1) → L. We will now construct ψ :

L(k) → L. Let m0,m1, . . . ,mnk
be an enumeration of the elements in L(k+1) such that

mi is a maximal element in the set {mi, . . . ,mnk
}, and let

inv(a) = { b | b ∈ L(k) ∧ b′ = a } .

Now, inv(m0), inv(m1), . . . , inv(mnk
) are disjunct sets, and

L(k) = inv(m0) ∪ inv(m1) ∪ . . . ∪ inv(mnk
) .

We construct the embedding ψ : L(k) → L by constructing the embedding ψ : inv(m0) →
L, then the embedding ψ : inv(m1) → L, and so on.

Here is how to construct ψ : inv(mi) → L (for any i ∈ {0, . . . , nk}). Pick a maximal
element a ∈ inv(mi). The embedding ψ is now defined for all b ∈ L such that b > a.
Let α ∈ L be given by α =

⋂

{ψ(b) | b > a}. Now we have α′ ≥ ψ(a′) ≥ α as L satisfies
the axiom ∀a, b[a′ ∩ b′ = (a ∩ b)′]. As L satisfies the Jump Inversion Axiom, the Low
Degree Axiom and the Pendulum Axiom, we can now find a suitable interval where we
by Lemma 7.4 can embed all elements in inv(mi) that cannot be distinguished from a

by comparing them to elements already embedded. Next we consider a maximal element
in inv(mi) not yet treated, and construct ψ on the set of elements equivalent to this
element as we did for the elements equivalent to a. Continuing downwards in this way
we construct ψ for all elements in inv(mi). �

Theorem 7.6 (Σ1-completeness) Let H denote the L-structure of honest elementary
degrees (our standard model for T ), and let A be a Σ1-statement in the language L.
Then

H |= A ⇔ T ⊢ A .

Proof. By Theorem 7.5, we know that if a finite jump lattice does not embed into an
arbitrary model for T , the it will not embed into any model of T . Thus, a Σ1-statement
A will be satisfied in all models for T if, and only if, A is satisfied in some model for T .
By the Completeness Theorem for first-order logic, we have

H |= A ⇔ T |= A ⇔ T ⊢ A .

�
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