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Abstract

The semantics introduced in [3] is extended to all topological spaces.

1 Introduction

The standard topological semantics, as introduced in [1] (or see instead [2]
by the same author), has been generalized in various ways, most notably via
categorical semantics. (For a good introduction, see [4].) Here is introduced,
not a generalized, but rather an alternative semantics instead.

An instance of this semantics was already applied in [3] to the reals as a
topological space. The purpose there was to come up with a model of CZFExp

set theory in which the Dedekind cuts do not form a set. CZFExp contains the
Axiom of Exponentiation (the existence of function spaces), but not any stronger
Power Set-like axiom, most notably Aczel’s Subset Collection, which suffices to
prove the Dedekind cuts are a set. The essence of the construction there is
that, as in a traditional topological model, the truth value of set membership
(σ ∈ τ , where σ and τ are terms) is an open set of R, but at any moment
the terms under consideration can collapse to ground model terms. (A ground
model term is the canonical image of a ground model set – think of the standard
embedding of V into V[G] in classical forcing.) Such a collapse does not make
the variable sets disappear, though. So no set could be the Dedekind cuts: any
such candidate could at any time collapse to a ground model set, but then it
wouldn’t contain the canonical generic because that’s a variable set, and this
generic, over R, is a Dedekind cut. 1

1For those already familiar with a similar-sounding construction by Joyal, this is exactly
what distinguishes the two. Joyal started with a topological space T , and took the union of T
with a second copy of T , the latter carrying the discrete topology (i.e. every subset is open).
So by Joyal, you could specialize at a point, but then every set is also specialized there. Here,
you can specialize every set you’re looking at at a point, but that won’t make the ambient
variable sets disappear. Alternatively, the whole universe will specialize, but at the same time
be reborn. For an exposition of Joyal’s argument in print, see either [2] or [5] p. 805-807.
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This process of collapsing to a ground model set we call settling down. Our
purpose is to show how this settling semantics works in an arbitrary topological
space, not just R. This extension is not completely straightforward. Certain
uniformities of R allowed for simplifications in the definition of forcing (�) and
for proofs of stronger set-theoretic axioms, most notably Full Separation and
Exponentiation. In the next section, we prove as much as we can making no
assumptions on the topological space T being worked over; in the following
section, natural and appropriately modest assumptions are made on T so that
Separation and Exponentiation can be proven.

The greatest weakness in what can be proven in the general case is in the
family of Power Set-like axioms. This is no surprise, as the semantics was
developed for a purpose which necessitated the failure of Subset Collection (and
hence of Power Set itself). That Exponentiation ended up holding is thanks to
the particularities of R, not to settling semantics. Rather, what does hold in
general is a weakened version of all of these Power Set-like axioms. The reason
that Power Set fails, like the non-existence of the set of Dedekind cuts above,
is that any candidate for the power set of X might collapse to a ground model
set, and so would then no longer contain any variable subset of X . However,
that variable subset might itself collapse, and then would be in the classical
power set of X . So while the subset in question, before the collapse, might not
equal a member of the classical power set, it cannot be different from every such
member. That is the form of Power Set which holds in the settling semantics:

Eventual Power Set: ∀X ∃C (∀Y ∈ C Y ⊆ X)∧(∀Y ⊆ X ¬∀Z ∈ C Y �= Z).
Although we will not need them, there are comparable weakenings of Subset

Collection (or Fullness) and Exponentiation:
Eventual Fullness: ∀X,Y ∃C (∀Z ∈ C Z is a total relation from X to Y )

∧ (∀R if R is a total relation from X to Y then ¬∀Z ∈ C Z �⊆ R).
Eventual Exponentiation: ∀X,Y ∃C ∀F if F is a total function from X to

Y then ¬∀Z ∈ C F �= Z.

Proposition 1.1 Eventual Power Set implies Eventual Fullness, which in turn
implies Eventual Exponentiation.

2 The General Case

First we define the term structure of the topological model with settling, then
truth in the model (the forcing semantics), and then we prove that the model
satisfies some standard set-theoretic axioms.

Definition 2.1 For a topological space T , a term is a set of the form {〈σi, Ji〉 |
i ∈ I} ∪ {〈σh, rh〉 | h ∈ H}, where each σ is (inductively) a term, each J an
open set, each r is a member of T , and H and I index sets.

The first part of each term is as usual. It suffices for the embedding x 
→ x̂
of the ground model into the topological model:
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Definition 2.2 x̂ = {〈ŷ, T 〉 | y ∈ x}. Any term of the form x̂ is called a ground
model term.

For φ a formula in the language of set theory with (set, not term) parameters
x0, x1, ..., xn, then φ̂ is the formula in the term language obtained from φ by
replacing each xi with x̂i.

ˇ is the inverse of ,̂ for both sets/terms and formulas: ˆ̌τ = τ , ˇ̂x = x, ˆ̌φ = φ,

and ˇ̂
φ = φ.

The second part of the definition of a term plays a role only when we decide
to have the term settle down and stop changing. This settling down in described
as follows.

Definition 2.3 For a term σ and r ∈ T , σr is defined inductively on the terms
as {〈σr

i , T 〉 | 〈σi, Ji〉 ∈ σ ∧ r ∈ Ji} ∪ {〈σr
h, T 〉 | 〈σh, r〉 ∈ σ}.

Note that σr is a ground model term. It bears observation that (σr)s = σr.

Definition 2.4 For φ = φ(σ0, ..., σi) a formula with parameters σ0, ..., σi, φr is
φ(σr

0 , ..., σ
r
i ).

We define a forcing relation J � φ, with J an open subset of T and φ a
formula.

Definition 2.5 J � φ is defined inductively on φ:
J � σ = τ iff for all 〈σi, Ji〉 ∈ σ J ∩ Ji � σi ∈ τ and vice versa, and for all

r ∈ J σr = τr

J � σ ∈ τ iff for all r ∈ J there is a 〈τi, Ji〉 ∈ τ and Jr ⊆ Ji containing r
such that Jr � σ = τi

J � φ ∧ ψ iff J � φ and J � ψ
J � φ ∨ ψ iff for all r ∈ J there is a Jr ⊆ J containing r such that Jr � φ

or Jr � ψ
J � φ→ ψ iff for all J ′ ⊆ J if J ′ � φ then J ′ � ψ, and, for all r ∈ J , there

is a Jr ⊆ J containing r such that, for all K ⊆ Jr, if K � φr then K � ψr

J � ∃x φ(x) iff for all r ∈ J there is a Jr ⊆ J containing r and a σ such
that Jr � φ(σ)

J � ∀x φ(x) iff for all σ J � φ(σ), and for all r ∈ J there is a Jr ⊆ J
containing r such that for all σ Jr � φr(σ).

(Notice that in the last clause, σ is not interpreted as σr.)

Lemma 2.6 � is sound for constructive logic.

Lemma 2.7 T forces the equality axioms, to wit:

1. ∀x x = x

2. ∀x, y x = y → y = x
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3. ∀x, y, z x = y ∧ y = z → x = z

4. ∀x, y, z x = y ∧ x ∈ z → y ∈ z

5. ∀x, y, z x = y ∧ z ∈ x→ z ∈ y.

proof:
1: It is trivial to show via a simultaneous induction that, for all J and

σ, J � σ = σ, and, for all 〈σi, Ji〉 ∈ σ, J ∩ Ji � σi ∈ σ.
2: Trivial because the definition of J � σ =M τ is itself symmetric.
3: For this and the subsequent parts, we need a lemma.

Lemma 2.8 If J ′ ⊆ J � σ = τ then J ′ � σ = τ , and similarly for ∈.

proof: By induction on σ and τ .

Returning to the main lemma, we show that if J � ρ = σ and J � σ = τ
then J � ρ = τ , which suffices. This will be done by induction on terms for all
opens J simultaneously.

For the second clause in J � ρ = τ , let r ∈ J . By the hypotheses, second
clauses, ρr = σr and σr = τr, so ρr = τr.

The first clause of the definition of forcing equality follows by induction on
terms. Starting with 〈ρi, Ji〉 ∈ ρ, we need to show that J ∩ Ji � ρi ∈ τ . We
have J ∩ Ji � ρi ∈ σ. For a fixed, arbitrary r ∈ J ∩ Ji let 〈σj , Jj〉 ∈ σ and
J ′ ⊆ J ∩ Ji be such that r ∈ J ′ ∩ Jj � ρi = σj . By hypothesis, J ∩ Jj � σj ∈ τ .
So let 〈τk, Jk〉 ∈ τ and Ĵ ⊆ J ∩ Jj be such that r ∈ Ĵ ∩ Jk � σj = τk. Let J̃
be J ′ ∩ Ĵ ∩ Jj . Note that J̃ ⊆ J ∩ Ji, and that r ∈ J̃ ∩ Jk. We want to show
that J̃ ∩ Jk � ρi = τk. Observing that J̃ ∩ Jk ⊆ J ′ ∩ Jj , Ĵ ∩ Jk, it follows by
the previous lemma that J̃ ∩ Jk � ρi = σj , σj =M τk, from which the desired
conclusion follows by the induction. So r ∈ J̃ ∩ Jk � ρi ∈ τ. Since r ∈ J ∩ Ji

was arbitrary, J ∩ Ji � ρi ∈ τ.
4: It suffices to show that if J � ρ = σ and J � ρ ∈ τ then J � σ ∈ τ . Let

r ∈ J . By hypothesis, let 〈τi, Ji〉 ∈ τ, Jr ⊆ Ji be such that r ∈ Jr � ρ = τi;
without loss of generality Jr ⊆ J . By the previous lemma, Jr � ρ = σ, and by
the previous part of the current lemma, Jr � σ = τi. Hence Jr � σ ∈ τ . Since
r ∈ J was arbitrary, we are done.

5: Similar, and left to the reader.

Lemma 2.9 1. For all φ ∅ � φ.

2. If J ′ ⊆ J � φ then J ′ � φ.

3. If Ji � φ for all i then
⋃

i Ji � φ.

4. J � φ iff for all r ∈ J there is a Jr ⊆ J containing r such that Jr � φ.

4



5. For all φ, J if J � φ then for all r ∈ J there is a neighborhood Jr of r
such that Jr � φr.

6. For φ bounded (i.e. ∆0) and having only ground model terms as parame-
ters, T � φ iff φ̌ (i.e. V |= φ̌).

proof:
1. Trivial induction. This part is not used later, and is mentioned here only

to flesh out the picture.
2. Again, a trivial induction. The base cases, = and ∈, are proven by

induction on terms, as mentioned just above.
3. By induction. For the case of →, you need to invoke the previous part of

this lemma. All other cases are straightforward.
4. Trivial, using 3.
5. By induction on φ.
=: If r ∈ J � σ = τ then σr = τr. By the proof of the first part of the

equality lemma, T � σr = τr .
∈: If r ∈ J � σ ∈ τ , let τi, Ji, and Jr be as given by the definition of forcing

∈. Inductively, some neighborhood of r (or, by the previous case, T itself) forces
σr = τr

i . Since 〈τr
i , T 〉 ∈ τr , T � τr

i ∈ τr, and T � σr ∈ τr .
∨: If r ∈ J � φ ∨ ψ, suppose without loss of generality that r ∈ Jr � φ.

Inductively let Kr be a neighborhood of r forcing φr . Then Kr � φr ∨ ψr.
∧: If r ∈ J � φ ∧ ψ, let Jr and Kr be neighborhoods of r such that Jr � φ

and Kr � ψ. Then Jr ∩Kr is as desired.
→: If r ∈ J � φ→ ψ, then Jr as given in the definition of forcing → suffices.

(To verify the second clause in the definition of Jr � φr → ψr, use the fact that
(φr)s = φ and (ψr)s = ψ.)

∃: If r ∈ J � ∃x φ(x), let Jr ⊆ J and σ be such that r ∈ Jr � φ(σ). By
induction, let Kr be such that r ∈ Kr � φr(σr). So Kr � ∃x φr(x).

∀: If r ∈ J � ∀x φ(x), then Jr as given by the definition of forcing ∀ suffices.
6. A simple induction.

At this point, we are ready to show what is in general forced under this
semantics.

Theorem 2.10 T forces:

Infinity

Pairing

Union

Extensionality

Set Induction

Eventual Power Set
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Bounded (∆0) Separation

Collection

Some comments on this choice of axioms are in order. The first five are
unremarkable. The role of Eventual Power Set was discussed in the Introduction.
The restriction of Separation to the ∆0 case should be familiar, as that is also
the case in CZF and KP. By way of compensation, the version of Collection
in CZF is Strong Collection: not only does every total relation with domain
a set have a bounding set (regular Collection), but that bounding set can be
chosen so that it contains only elements related to something in the domain (the
strong version). In the presence of full Separation, these are equivalent, as an
appropriate subset of any bounding set can always be taken. Unfortunately, even
the additional hypotheses provided by Collection are not enough in the current
context to yield even this modest fragment of Separation, as will actually be
shown at the beginning of the next section. In fact, even Replacement fails, as
we will see.

proof:

• Infinity: ω̂ will do. (Recall that the canonical name x̂ of any set x from
the ground model is defined inductively as {〈ŷ, T 〉 | y ∈ x}.)

• Pairing: Given σ and τ , {〈σ, T 〉, 〈τ, T 〉} will do.

• Union: Given σ, the union of the following four terms will do:

– {〈τ, J ∩ Ji〉 | for some σi, 〈τ, J〉 ∈ σi and 〈σi, Ji〉 ∈ σ}
– {〈τ, r〉 | for some σi, 〈τ, r〉 ∈ σi and 〈σi, r〉 ∈ σ}
– {〈τ, r〉 | for some σi and K, 〈τ,K〉 ∈ σi, r ∈ K, and 〈σi, r〉 ∈ σ}
– {〈τ, r〉 | for some σi and K, 〈τ, r〉 ∈ σi, r ∈ K, and 〈σi,K〉 ∈ σ}.

• Extensionality: We need to show that T � ∀x ∀y [∀z (z ∈ x ↔ z ∈ y) →
x = y]. It suffices to show that for any terms σ and τ , T � ∀z (z ∈ σ ↔
z ∈ τ) → σ = τ . (Although that is only the first clause in forcing ∀, it
subsumes the second, because σ and τ could have been chosen as ground
model terms in the first place.) To show that, for the second clause in
forcing →, it suffices to show that T � ∀z (z ∈ σr ↔ z ∈ τr) → σr = τr .
But, as before, this is already subsumed by choosing σ and τ to be ground
model terms in the first place. Hence it suffices to check the first clause
in forcing →: for all J , if J � ∀z (z ∈ σ ↔ z ∈ τ), then J � σ = τ .

To this end, let 〈σi, Ji〉 be in σ; we need to show that J ∩ Ji � σi ∈ τ . By
the choice of J , J � σi ∈ σ ↔ σi ∈ τ . In particular, J � σi ∈ σ → σi ∈ τ .
By 2.9, part 2), J ∩ Ji � σi ∈ σ → σi ∈ τ . Since J ∩ Ji � σi ∈ σ (proof of
2.7, part 1)), J ∩ Ji � σi ∈ τ . Symmetrically for 〈τi, Ji〉 ∈ τ .

Also, let r ∈ J . If σr �= τr , let 〈ρ, T 〉 be in their symmetric difference. By
the choice of J , for some neighborhood Jr of r, Jr � ρ ∈ σr ↔ ρ ∈ τr .
This contradicts the choice of ρ. So σr = τr.
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• Set Induction (Schema): We need to show that T � ∀x ((∀y ∈ x φ(y)) →
φ(x)) → ∀x φ(x). The statement in question is an implication. The defi-
nition of forcing → contains two clauses.

The first clause is that, for any open set J and formula φ, if J � ∀x(∀y ∈
x φ(y) → φ(x)) then J � ∀x φ(x). By way of proving that, suppose not.
Let J and φ provide a counter-example. By hypothesis,

∀σ J � ∀y ∈ σ φ(y) → φ(σ) (1)

and
∀r ∈ J ∃J ′ � r ∀σ′ J ′ � ∀y ∈ σ′ φr(y) → φr(σ′). (2)

Since J �� ∀xφ(x), either
∃σ J �� φ(σ) (3)

or
∃r ∈ J ∀J ′ � r ∃σ′ J ′ �� φr(σ′). (4)

If (4) holds, let r as given by (4), and then let J ′ be as given by (2) for
that r. By (4), ∃σ′ J ′ �� φr(σ′); let σ be such a σ′ – so J ′ �� φr(σ) – of
minimal V-rank. By (2), we have J ′ � ∀y ∈ σ φr(y) → φr(σ). If we can
show that J ′ � ∀y ∈ σ φr(y), then (by the definition of forcing →) we will
have a contradiction, showing that (4) must fail.

To that end, we must show, unpacking the abbreviation, that J ′ � ∀y(y ∈
σ → φr(y)); that is,

∀τ J ′ � τ ∈ σ → φr(τ) (5)

and
∀s ∈ J ′ ∃K � s ∀τ K � τ ∈ σs → φr(τ), (6)

the latter because (φr)s = φr.

By way of showing (5), suppose J ′ ⊇ K � τ ∈ σ. Then K can be covered
with open sets Ki such that Ki � τ = σi and Ki ⊆ Ji where 〈σi, Ji〉 ∈ σ.
Since σi has strictly lower V-rank than σ, J ′ � φr(σi). Hence Ki � φr(τ).
Since the Kis cover K (by lemma 2.9, part 3)) K forces the same. We
still have to show that for all s ∈ J ′ there is a K � s such that for all
K ′ ⊆ K if K ′ � τs ∈ σs then K ′ � φr(τs). In fact, J ′ suffices for K:
if J ′ ⊇ K ′ � τs ∈ σs then K ′ � φr(τs). Moreover, this is the same
argument as the one just completed, with σs in place of σ. The only
minor observation that bears making is that the V-rank of σs is less than
or equal to that of σ, so again when τ is forced to be a member of σs its
V-rank is strictly less than that of σ, so the choice of σ carries us through.

To show (6), we claim that J ′ suffices for the choice of K: J ′ � τ ∈ σs →
φr(τ). Once more, this is just (5), with σs in place of σ.

This completes the proof that (4) must fail. Hence we have that the
negation of (4) must hold, namely

∀r ∈ J ∃J ′ � r ∀σ′ J ′ � φr(σ′), (7)
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as well as (3). Let σ be of minimal V-rank such that J �� φ(σ). If we
can show that J � ∀y ∈ σ φ(y), then by (1) we will have a contradiction,
completing the proof of the first clause.

What we need to show are

∀τ J � τ ∈ σ → φ(τ) (8)

and
∀r ∈ J ∃J ′ � r ∀τ J ′ � τ ∈ σr → φr(τ). (9)

By way of showing (8), suppose J ⊇ K � τ ∈ σ; we need to show that
K � φ(τ). This is the same argument, based on the minimality of σ, as
in the proof of (5). The other part of showing (8) is

∀r ∈ J ∃J ′ � r ∀K ⊆ J ′ (K � τr ∈ σr ⇒ K � φr(τr)). (10)

Both (9) and (10) are special cases of (7).

This completes the proof of the first clause.

The second clause is that for all r ∈ T there is a J � r such that for all
K ⊆ J if K � ∀x ((∀y ∈ x φr(y)) → φr(x)) then K � ∀x φr(x). For
any r, let J be T . Then what remains of the claim has exactly the same
form as the first clause, with K and φr for J and φ respectively. Since
the validity of this first clause was already shown for all choices of J and
φ, we are done.

• Eventual Power Set: We need to show that T � ∀X ∃C ∀Y (Y ⊆ X →
¬∀Z(Z ∈ C → Y �= Z)). (Actually, we must also produce a C that
contains only subsets of X . However, to extract such a sub-collection
from any C as above is an instance of Bounded Separation, the proof of
which below does not rely on the current proof. So we will make our lives
a little easier and prove the version of EPS as stated.) Since the sentence
forced has no parameters, the second clause in forcing ∀ is subsumed by
the first, so all we must show is that, for any term σ, T � ∃C ∀Y (Y ⊆
σ → ¬∀Z(Z ∈ C → Y �= Z)).

Let τ = {〈x̂, r〉 | σr = ŝ ∧ x ⊆ s}. This is the desired C. It suffices to
show that T � ∀Y (Y ⊆ σ → ¬∀Z(Z ∈ τ → Y �= Z)).

For the first clause in forcing ∀, we need to show that T � ρ ⊆ σ →
¬∀Z(Z ∈ τ → ρ �= Z). To do that, first suppose T ⊇ J � ρ ⊆ σ. (Note
that that implies that for all s ∈ J T � ρs ⊆ σs, so that 〈ρs, s〉 ∈ τ , and
T � ρs ∈ τs.) We must show that J � ¬∀Z(Z ∈ τ → ρ �= Z). It suffices
to show that no non-empty subset K of J forces ∀Z(Z ∈ τ → ρ �= Z) or
∀Z(Z ∈ τr → ρr �= Z) (r ∈ J). For the former, we will show that K must
violate the second clause in forcing ∀. Let s ∈ K. Letting Z be ρs, as just
observed, all of T will force Z ∈ τs but nothing will force ρs �= Z. Similarly
for the latter, by choosing Z to be ρr. To finish forcing the implication,
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it suffices to show that for all r T � ρr ⊆ σr → ¬∀Z(Z ∈ τr → ρr �= Z).
Again, it suffices to let Z be ρr.
For the second clause in forcing ∀, for r ∈ T and ρ a term, it suffices to
show that T � ρ ⊆ σr → ¬∀Z(Z ∈ τr → ρ �= Z). This time letting Z by
any ρs suffices.

• Bounded Separation: The important point here is that, for φ bounded
(∆0) with only ground model terms, J � φ iff T � φ iff V |= φ̌ (2.9, part
6).

We need to show that T � ∀X ∃Y ∀Z (Z ∈ Y ↔ Z ∈ X ∧ φ(Z)). This
means, first, that for any σ, T � ∃Y ∀Z (Z ∈ Y ↔ Z ∈ σ ∧ φ(Z)),
and, second, for any r ∈ T there is a J � r such that, for any σ, J �
∃Y ∀Z (Z ∈ Y ↔ Z ∈ σ∧φr(Z)). In the second part, choosing J to be T ,
we have an instance of the first part, so it suffices to prove the first only.

Let τ be {〈σi, J∩Ji〉 | 〈σi, Ji〉 ∈ σ and J � φ(σi)}∪{〈x̂, r〉 | 〈x̂, T 〉 ∈ σr and
T � φr(x̂)}. We claim that τ suffices: T � ∀Z (Z ∈ τ ↔ Z ∈ σ ∧ φ(Z)).
First, let ρ be a term. We need to show that T � ρ ∈ τ ↔ ρ ∈ σ ∧ φ(ρ).
Unraveling the bi-implication and the definition of forcing an implication,
that becomes J � ρ ∈ τ iff J � ρ ∈ σ ∧ φ(ρ), and J � ρr ∈ τr iff
J � ρr ∈ σr ∧ φr(ρr). The first iff should be clear from the first part of
the definition of τ and the second iff from the second part of the definition,
along with the observation that forcing φr(ρr) is independent of J .
We also need, for each r ∈ T , a J � r such that for all ρ J � ρ ∈ τr ↔
ρ ∈ σr ∧ φr(ρ). Choosing J to be T and unraveling as above (recycling
the variable J) yields J � ρ ∈ τr iff J � ρ ∈ σr ∧ φr(ρ), and J � ρs ∈ τr

iff J � ρs ∈ σr ∧ φr(ρs). These hold because the only things that can be
forced to be in τr or σr are (locally) images of ground model terms, and
the truth of φr evaluated at such a term is independent of J .

• Collection: Since only regular, not strong, Collection is true here, it would
be easiest to his this with a sledgehammer: reflect V to some set M large
enough to contain all the parameters and capture the truth of the assertion
in question; the term consisting of the whole universe according to M will
be more than enough. It is more informative, though, to follow through
the natural construction of a bounding set, so we can highlight in the next
section just what goes wrong with the proof of Strong Collection.

We need T � ∀x ∈ σ ∃y φ(x, y) → ∃z ∀x ∈ σ ∃y ∈ z φ(x, y). It suffices
to show that for any J if J � ∀x ∈ σ ∃y φ(x, y) then J � ∃z ∀x ∈ σ ∃y ∈
z φ(x, y), and the same relativized to r. The latter is a special case of the
former, so it suffices to show just the former.

By hypothesis, for each 〈σi, Ji〉 ∈ σ and r ∈ Ji ∩ J there are τir and
Jir ⊆ Ji ∩ J , Jir � r such that Jir � φ(σi, τir). Also, for all r ∈ J there
is a Jr � r such that, for all 〈x̂, T 〉 ∈ σr, Jr � ∃y φr(x̂, y). For each
s ∈ Jr, let τrx̂s and K � s be such that K � φr(x̂, τrx̂s). By 2.9, part 5),
K � φr(x̂, τs

rx̂s).
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We claim that τ = {〈τir , Jir〉 | i ∈ I, r ∈ Ji∩J}∪{〈τs
rx̂s, r〉 | r ∈ J, 〈x̂, T 〉 ∈

σr, s ∈ Jr} suffices: J � ∀x ∈ σ ∃y ∈ τ φ(x, y).

Forcing a universal has two parts. The first is that for all ρ, J � ρ ∈ σ →
∃y ∈ τ φ(ρ, y). For the second, it suffices to show that for all r ∈ J and
terms ρ Jr � ρ ∈ σr → ∃y ∈ τr φr(ρ, y).

For the former, first suppose J ⊇ K � ρ ∈ σ. It should be clear that
the first part of τ covers this case. For the other part of forcing that
implication, for each r ∈ J , it suffices to show that Jr is as desired: for all
K ⊆ Jr, if K � ρr ∈ σr then K � ∃y ∈ τr φr(ρr, y). This is subsumed by
the second implication from above, to which we now turn.

To show Jr � ρ ∈ σr → ∃y ∈ τr φr(ρ, y), we need to show first that if
Jr ⊇ K � ρ ∈ σr then K � ∃y ∈ τr φr(ρ, y), and second that for all s ∈ Jr

there is a K � s such that if K ⊃ L � ρs ∈ σr then L � ∃y ∈ τr φr(ρs, y).
By choosing K to be Jr, the second is subsumed by the first. For that, it
should be clear that the second part of τ covers this case. In a bit more
detail, it suffices to work locally. (That is, it suffices to find a neighborhood
of s ∈ K forcing what we want, by 2.9.) Locally, ρ is forced equal to some
x̂, where 〈x̂, T 〉 ∈ σr. As already shown, some neighborhood of s forces
φr(x̂, τs

rx̂s), and 〈τs
rx̂s, T 〉 ∈ τr by the second part of τ .

3 Separation and Exponentiation

If Separation were to hold (in the presence of the other axioms from above),
then Strong Collection would follow, which itself implies Replacement. Hence
a powerful way to show that Separation is not forced is to give an example
in which even Replacement fails. In the example below, the offending formula
is a Boolean combination of Σ1 formulas; we do not know if simpler instances
of Replacement, such as for Σ1 or ∆0 formulas, are falsifiable or instead are
actually forced.

Let Tn (n > 0) be the standard space for collapsing ℵn to be countable:
elements are injections from ℵ0 to ℵn, and an open set is given by a finite partial
function of the same type. Let T be the disjoint union of the Tns adjoined with
an extra element ∞:

⊎
n Tn ∪ {∞}. A basis for the topology is given by all the

open subsets of each Tn, plus the basic open neighborhoods of ∞, which are all
of the form

⊎
n≥N Tn ∪ {∞} for some fixed N .

This T falsifies Replacement. To state the instance claimed to be falsified,
we need two parameters. One is {〈n̂,∞〉 | n ∈ ω}, which we will call ω−, and
the other the internalization of the function n 
→ ℵn (n ∈ ω), which we will refer
to via the free use of the notation ℵ̂n, even when n is just a variable.
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Proposition 3.1 T �� ∀x ∈ ω− ∃!y [(y = 0 ∨ y = 1) ∧ (y = 0 ↔ ℵ̂x is
uncountable)∧(y = 1 ↔ ¬¬ℵ̂x is countable)] → ∃f ∀x ∈ ω−[(f(x) = 0∨f(x) =
1) ∧ (f(x) = 0 ↔ ℵ̂x is uncountable) ∧ (f(x) = 1 ↔ ¬¬ℵ̂x is countable)].

proof: First we show that T forces the antecedent ∀x[x ∈ ω− → ∃!y [(y =
0 ∨ y = 1) ∧ (y = 0 ↔ ℵ̂x is uncountable) ∧ (y = 1 ↔ ¬¬ℵ̂x is countable)]].

For the first clause in forcing ∀, we need to show that for all σ T � σ ∈
ω− → ∃!y [(y = 0 ∨ y = 1) ∧ (y = 0 ↔ ℵ̂σ is uncountable) ∧ (y = 1 ↔ ¬¬ℵ̂σ

is countable)]. The first clause in forcing that implication is vacuous, as no
open set will force σ ∈ ω−. The second clause is vacuous for all choices of r
except ∞, as then (ω−)r is empty. Finally, for r = ∞, it suffices to show that
T � ∃!y [(y = 0 ∨ y = 1) ∧ (y = 0 ↔ ℵ̂n̂ is uncountable) ∧ (y = 1 ↔ ¬¬ℵ̂n̂ is
countable)]. The term which is 0 on

⊎
0<i<n Tn and 1 on the rest of T suffices.

The second clause in forcing ∀ is similar.
Since T forces the antecedent of the conditional, it suffices to show that T

does not force the consequent: T �� ∃f ∀x ∈ ω−[(f(x) = 0∨f(x) = 1)∧ (f(x) =
0 ↔ ℵ̂x is uncountable)∧ (f(x) = 1 ↔ ¬¬ℵ̂x is countable)]. If that were not the
case, there would be a term (we will ambiguously refer to as f) and a neighbor-
hood J of ∞ such that J � ∀x ∈ ω−[(f(x) = 0∨ f(x) = 1) ∧ (f(x) = 0 ↔ ℵ̂x is
uncountable) ∧ (f(x) = 1 ↔ ¬¬ℵ̂x is countable)]. By 2.9, part 5), there would
be a K � ∞ such that K � ∀x ∈ ω[(f∞(x) = 0∨f∞(x) = 1)∧(f∞(x) = 0 ↔ ℵ̂x

is uncountable) ∧ (f∞(x) = 1 ↔ ¬¬ℵ̂x is countable)]. K, being open, contains
a set of the form

⊎
n≥N Tn. Let M be N + 1. So K � (f∞(M̂) = 0∨ f∞(M̂) =

1)∧ (f∞(M̂) = 0 ↔ ℵ̂M̂ is uncountable)∧ (f∞(M̂) = 1 ↔ ¬¬ℵ̂M̂ is countable).
But f∞(M̂) is a ground model term, and so is (forced by K to be) equal to 0̂ or
1̂. Hence either K � ℵ̂M̂ is uncountable orK � ¬¬ℵ̂M̂ is countable. But neither
is the case, since K ⊇ TN � ℵ̂M̂ is uncountable and K ⊇ ⊎

n>N Tn � ℵ̂M̂ is
countable.

In the example above, the problem around ∞ is that no neighborhood forces
just what gets collapsed and what doesn’t. It is this lack of homogeneity that
is the root cause of the failure of Separation.

Definition 3.2 T is locally homogeneous around r, s ∈ T if there are neighbor-
hoods Jr, Js of r and s respectively and a homeomorphism of Jr to Js sending
r to s.

An open set U is homogeneous if it is locally homogeneous around all r, s ∈ U .
T is locally homogeneous if every r ∈ T has a homogeneous neighborhood.

Lemma 3.3 If U is homogeneous, φ contains only ground model terms, and
U ⊇ V � φ (V non-empty), then U � φ.

proof: Let r ∈ V . For s ∈ U , let Vr and Vs be the neighborhoods f the
homeomorphism given by the homogeneity of U . f(σ) can be defined inductively
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on terms σ. (Briefly, hereditarily restrict σ to Vr and apply f to the second parts
of the pairs in the terms.) f(ψ) is then ψ with f applied to the parameters. It
is easy to show inductively on formulas that Vr � ψ iff Vs � f(ψ).

If φ contains only ground model terms, then f(φ) = φ. So U is covered by
open sets that force φ. Hence U � φ.

Theorem 3.4 If T is locally homogeneous then T � FullSeparation.

proof: As in the proof of Bounded Separation from the previous section, we
have to show that, for any σ, T � ∃Y ∀Z (Z ∈ Y ↔ Z ∈ σ ∧ φ(Z)), only this
time with no restriction on φ. The choice of witness Y is slightly different. For
each r let Kr � r be homogeneous. Let τ be {〈σi, J ∩ Ji〉 | 〈σi, Ji〉 ∈ σ and
J � φ(σi)} ∪ {〈x̂, r〉 | 〈x̂, T 〉 ∈ σr and Kr � φr(x̂)}. The difference from before
is that in the latter part of τ membership is determined by what’s forced by Kr

instead of by T . We claim that τ suffices: T � ∀Z (Z ∈ τ ↔ Z ∈ σ ∧ φ(Z)).
For the first clause in forcing ∀, let ρ be a term. We need to show T � ρ ∈

τ ↔ ρ ∈ σ ∧ φ(ρ). By the first clause in forcing →, we have to show that for all
J J � ρ ∈ τ iff J � ρ ∈ σ ∧ φ(ρ), which should be clear from the first part of τ .
For the second clause in → it suffices to show that for all J ⊆ Kr J � ρr ∈ τr

iff J � ρr ∈ σr ∧ φr(ρr). Regarding forcing membership, all of the terms here
are ground model terms, so membership is absolute (does not depends on the
choice of J). If ρr enters τr because of the first part of τ ’s definition, then
we have σr

i = ρr, r ∈ J � φ(σi), r ∈ Ji, and 〈σi, Ji〉 ∈ σ. By 2.9, part 5),
some neighborhood Jr of r forces φr(σr

i ). By the lemma just above (applied to
Kr ∩ Jr), Kr forces the same. Hence we can restrict our attention to terms ρr

which enter τ because of τ ’s definition’s second part. Again by the preceding
lemma, for J non-empty, J � φr(ρr) iff Kr � φr(ρr), which suffices. (For J
empty, J forces everything.)

For the second clause in forcing ∀, it suffices to show that Kr � ρ ∈ τr ↔
ρ ∈ σr ∧φr(ρ). If any J ⊆ Kr forces ρ ∈ τr or ρ ∈ σr, then locally ρ is forced to
be some ground model term, and we’re in the same situation as in the previous
paragraph.

It would be nice to turn the previous theorem into an iff. If that is false,
it would be interesting to see exactly what condition is equivalent to Full Sep-
aration. Presumably it would have something to do with homogeneity, since
the proof given seems so natural, but it’s possible that the correct condition, if
weaker than local homogeneity, would involve different issues. It’s also possible
that Separation has no natural correspondent on the topological side, which
would be very unfortunate, but still important to know.

We now turn our attention to Exponentiation.

Theorem 3.5 If T is locally connected, then T � Exponentiation.
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proof: Given terms σ and χ, let τ be {〈ρ, J〉 | J � ρ is a function from σ to
χ} ∪ {〈x̂, r〉 | x is a function from σ̌r to χ̌r}. (τ can be arranged to be set-sized
by requiring that ρ be hereditarily empty outside of J .) It suffices to show that
T � ∀z (z ∈ τ ↔ z is a function from σ to χ).

The first clause in forcing ∀ is that, for any term ρ, T � ρ ∈ τ ↔ ρ is a
function from σ to χ. That J � ρ ∈ τ iff J � “ρ is a function from σ to χ” is
immediate from the first part of τ . As for J � ρr ∈ τr iff J � “ρr is a function
from σr to χr”, by 2.9, part 6), both of those statements are independent of J ,
and the iff holds because of the second part of τ .

The crux of the matter is the second clause in forcing ∀: J � ρ ∈ τr iff
J � “ρ is a function from σr to χr”. Why can only ground model functions
be forced (locally) to be functions? For s ∈ J , let Ks ⊆ J be a connected
neighborhood of s. For each 〈σi, T 〉 ∈ σr , pick a 〈χi, T 〉 ∈ χ such that the value
of (i.e. the largest subset of Ks forcing) “ρ(σi) = χi” is non-empty. That set,
along with the value of “ρ(σi) �= χi”, is a disjoint open cover of Ks. Since Ks

is connected, the latter set is empty. So all of the values of ρ are determined by
Ks, so Ks forces ρ to equal a ground model term. Since J is covered by such
sets, J also forces ρ to be a ground model term.

Again, it would be nice to turn this into an iff, or, failing that, to know what
topological equivalent there is to Exponentiation.

An application of these theorems can be found in [3]. The second model
presented there is the topological semantics of the current paper applied to R

(with the standard topology). R is homogeneous (not just locally so) and locally
connected, which is why that model satisfied Separation and Exponentiation.
An example where Exponentiation fails is if T is Cantor space. Forcing with
T produces a random 0-1 sequence, which is a function from N to 2. So the
canonical generic is in a function space, but cannot be captured by any ground
model set.
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