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How far up in the L-hierarchy do you have to go to model
Σ0

3-Determinacy?
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How far up in the L-hierarchy do you have to go to model
Σ0

3-Determinacy?
(Welch) The least model Lγ of Σ0

3-Determinacy is between the
least Σ2-Admissible and the least Σ2-Non-Projectible ordinals.
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Introduction

How far up in the L-hierarchy do you have to go to model
Σ0

3-Determinacy?
(Welch) The least model Lγ of Σ0

3-Determinacy is between the
least Σ2-Admissible and the least Σ2-Non-Projectible ordinals.
Actually, Welch showed, from above, if

� γ0 < γ1 < γ2

� Lγ0 ≺Σ2 Lγ1

� Lγ0 ≺Σ1 Lγ2 and

� Lγ2 is a limit of admissibles,

then γ < γ0.
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Introduction

What Welch showed from below:

Definition
β is 0-extendible if for some δ Lβ ≺Σ2 Lδ.
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What Welch showed from below:

Definition
β is 0-extendible if for some δ Lβ ≺Σ2 Lδ.
β is (α+1)-extendible if its a Σ2-extendible limit of α-extendibles.
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Introduction

What Welch showed from below:

Definition
β is 0-extendible if for some δ Lβ ≺Σ2 Lδ.
β is (α+1)-extendible if its a Σ2-extendible limit of α-extendibles.
β is κ-extendible if its a Σ2-extendible limit of α-extendibles for
each α < κ.
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Introduction

What Welch showed from below:

Definition
β is 0-extendible if for some δ Lβ ≺Σ2 Lδ.
β is (α+1)-extendible if its a Σ2-extendible limit of α-extendibles.
β is κ-extendible if its a Σ2-extendible limit of α-extendibles for
each α < κ.
β is hyperextendible if β is α-extendible for all α < β.
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Introduction

What Welch showed from below:

Definition
β is 0-extendible if for some δ Lβ ≺Σ2 Lδ.
β is (α+1)-extendible if its a Σ2-extendible limit of α-extendibles.
β is κ-extendible if its a Σ2-extendible limit of α-extendibles for
each α < κ.
β is hyperextendible if β is α-extendible for all α < β.

γ is greater than the least hyperextendible.
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ITTMs

(Hamkins & Lewis) An Infinite time Turing machine is a regular
Turing machine with limit stages.
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(Hamkins & Lewis) An Infinite time Turing machine is a regular
Turing machine with limit stages. At a limit stage:
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(Hamkins & Lewis) An Infinite time Turing machine is a regular
Turing machine with limit stages. At a limit stage:

� the machine is in a dedicated state
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ITTMs

(Hamkins & Lewis) An Infinite time Turing machine is a regular
Turing machine with limit stages. At a limit stage:

� the machine is in a dedicated state

� the head is on the 0th cell
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ITTMs

(Hamkins & Lewis) An Infinite time Turing machine is a regular
Turing machine with limit stages. At a limit stage:

� the machine is in a dedicated state

� the head is on the 0th cell

� the content of a cell is limsup of the previous contents (i.e. 0
if eventually 0, 1 if eventually 1, 1 if cofinally alternating)
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ITTMs

(Hamkins & Lewis) An Infinite time Turing machine is a regular
Turing machine with limit stages. At a limit stage:

� the machine is in a dedicated state

� the head is on the 0th cell

� the content of a cell is limsup of the previous contents (i.e. 0
if eventually 0, 1 if eventually 1, 1 if cofinally alternating)

(Welch) The latest stage at which an ITTM can enter into a loop
is at the least 0-extendible (i.e. the least Σ2-extendible).
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ITTMs

(Hamkins & Lewis) An Infinite time Turing machine is a regular
Turing machine with limit stages. At a limit stage:

� the machine is in a dedicated state

� the head is on the 0th cell

� the content of a cell is limsup of the previous contents (i.e. 0
if eventually 0, 1 if eventually 1, 1 if cofinally alternating)

(Welch) The latest stage at which an ITTM can enter into a loop
is at the least 0-extendible (i.e. the least Σ2-extendible).
(L) The least hyperextendible can be characterized with iterated
ITTMs, which are machines that are allowed certain oracle calls.

Robert S. Lubarsky Florida Atlantic University Feedback ITTMs and Σ0
3 Determinacy



Introduction
FITTMs
Results

References

Feedback ITTMs

ITTMs with arbitrary iteration:
A computation may ask a convergence question about another
computation. This can be considered calling a sub-computation.
That sub-computation might do the same. This can continue,
generating a tree of sub-computations. Eventually, perhaps, a
computation is run which calls no sub-computation. This either
converges or diverges. That answer is returned to its calling
computation, which then continues.
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One can naturally define the course of a computation if and only if
the tree of sub-computations is well-founded. How is this to be
dealt with?
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FITTMs

Allow all possible sub-computation calls, even if the tree of
sub-computations is ill-founded, and consider only those for which
the tree of sub-computations just so happens to be well-founded.
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FITTMs

Allow all possible sub-computation calls, even if the tree of
sub-computations is ill-founded, and consider only those for which
the tree of sub-computations just so happens to be well-founded.
So some legal computations have an undefined result: the freezing
computations. The non-freezing computations have a perfectly
well-defined semantics.

Robert S. Lubarsky Florida Atlantic University Feedback ITTMs and Σ0
3 Determinacy



Introduction
FITTMs
Results

References

FITTMs

Allow all possible sub-computation calls, even if the tree of
sub-computations is ill-founded, and consider only those for which
the tree of sub-computations just so happens to be well-founded.
So some legal computations have an undefined result: the freezing
computations. The non-freezing computations have a perfectly
well-defined semantics. For the insiders: with this notion of
computation, the writable, eventually writable, and accidentally
writable reals are all the same.
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Results

Theorem
If an FITTM computation converges in α-many steps, then α < γ.
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Results

Theorem
If an FITTM computation converges in α-many steps, then α < γ.
If an FITTM computation freezes in α-many steps, then α ≤ γ.
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Results

Theorem
If an FITTM computation converges in α-many steps, then α < γ.
If an FITTM computation freezes in α-many steps, then α ≤ γ.

Proof.
Player I is to build (the Σ1 truth set of) a model M of “V = L and {e}
converges.” Player II is to find an infinite descending sequence through
the ordinals in I’s model.
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Results

Theorem
If an FITTM computation converges in α-many steps, then α < γ.
If an FITTM computation freezes in α-many steps, then α ≤ γ.

Proof.
Player I is to build (the Σ1 truth set of) a model M of “V = L and {e}
converges.” Player II is to find an infinite descending sequence through
the ordinals in I’s model. I has a winning strategy in V : play Lα. Hence I
has a w.s. in Lγ .
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Results

Theorem
If an FITTM computation converges in α-many steps, then α < γ.
If an FITTM computation freezes in α-many steps, then α ≤ γ.

Proof.
Player I is to build (the Σ1 truth set of) a model M of “V = L and {e}
converges.” Player II is to find an infinite descending sequence through
the ordinals in I’s model. I has a winning strategy in V : play Lα. Hence I
has a w.s. in Lγ . Let σ be such a w.s. Have II do nothing. If I plays Lα’s
truth set, we’re done.
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Results

Theorem
If an FITTM computation converges in α-many steps, then α < γ.
If an FITTM computation freezes in α-many steps, then α ≤ γ.

Proof.
Player I is to build (the Σ1 truth set of) a model M of “V = L and {e}
converges.” Player II is to find an infinite descending sequence through
the ordinals in I’s model. I has a winning strategy in V : play Lα. Hence I
has a w.s. in Lγ . Let σ be such a w.s. Have II do nothing. If I plays Lα’s
truth set, we’re done. If I ever makes an assertion about M which is false
for Lα, then II knows the model is non-standard, and must only find an
i.d.c.
Proof continued on next slide.
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Proof

Theorem
If an FITTM computation converges in α-many steps, then α < γ.
If an FITTM computation freezes in α-many steps, then α ≤ γ.

Proof.
(continued)If I ever plays something false of Lα, then Welch showed how
II can find an i.d.c. in that model, mod the following problem: in M ,
there could be ordinals such that
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Proof

Theorem
If an FITTM computation converges in α-many steps, then α < γ.
If an FITTM computation freezes in α-many steps, then α ≤ γ.

Proof.
(continued)If I ever plays something false of Lα, then Welch showed how
II can find an i.d.c. in that model, mod the following problem: in M ,
there could be ordinals such that

β0 < β1 < β2 < ... < δ2 < δ1 < δ0, βn standard, and Lβn ≺Σ2 Lδn .
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Proof

Theorem
If an FITTM computation converges in α-many steps, then α < γ.
If an FITTM computation freezes in α-many steps, then α ≤ γ.

Proof.
(continued)If I ever plays something false of Lα, then Welch showed how
II can find an i.d.c. in that model, mod the following problem: in M ,
there could be ordinals such that

β0 < β1 < β2 < ... < δ2 < δ1 < δ0, βn standard, and Lβn ≺Σ2 Lδn .

Any tree of sub-computations can be adorned with ordinals in a natural
way. In particular, the pair βn, δn is assigned to a node which is a parent
to the node of βn+1, δn+1.
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Proof

Theorem
If an FITTM computation converges in α-many steps, then α < γ.
If an FITTM computation freezes in α-many steps, then α ≤ γ.

Proof.
(continued)If I ever plays something false of Lα, then Welch showed how
II can find an i.d.c. in that model, mod the following problem: in M ,
there could be ordinals such that

β0 < β1 < β2 < ... < δ2 < δ1 < δ0, βn standard, and Lβn ≺Σ2 Lδn .

Any tree of sub-computations can be adorned with ordinals in a natural
way. In particular, the pair βn, δn is assigned to a node which is a parent
to the node of βn+1, δn+1. Hence the βn’s would give an i.d.c. in {e}’s
sub-computation tree, which was assumed to be well-founded. So that
problem can’t happen, giving II an opportunity to win, forcing I to play
the truth.
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Goals

Since we can’t get the freezing computations themselves to be in
Lγ , only initial segments of them, perhaps the ordinal of one of
them is γ itself.
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Goals

Since we can’t get the freezing computations themselves to be in
Lγ , only initial segments of them, perhaps the ordinal of one of
them is γ itself.
It would also be nice to have a description of γ and of the
FITTM-ordinals in terms of reflection/extendibility properties.

Robert S. Lubarsky Florida Atlantic University Feedback ITTMs and Σ0
3 Determinacy



Introduction
FITTMs
Results

References

References

� Joel Hamkins and Andy Lewis, “Infinite Time Turing Machines,”
The Journal of Symbolic Logic, v. 65 (2000), p. 567-604

� Robert Lubarsky, “ITTMs with Feedback,” in Ways of Proof
Theory (Ralf Schindler, ed.), Ontos, 2010

� Philip Welch, “The Length of Infinite Time Turing Machine
Computations,” The Bulletin of the London Mathematical
Society, v. 32 (2000), p. 129-136

� Philip Welch, “Eventually Infinite Time Turing Machine Degrees:
Infinite Time Decidable Reals,” The Journal of Symbolic Logic,
v. 65 (2000), p. 1193-1203

� Philip Welch, “Characteristics of Discrete Transfinite Turing
Machine Models: Halting Times, Stabilization Times, and Normal
Form Theorems,” Theoretical Computer Science, v. 410 (2009),
p. 426-442

� Philip Welch, “Weak Systems of Determinacy and Arithmetical
Quasi-Inductive Definitions,” JSL, to appear

Robert S. Lubarsky Florida Atlantic University Feedback ITTMs and Σ0
3 Determinacy


