
Feedback Hyperjump

Robert S. Lubarsky
Dept. of Mathematical Sciences

Florida Atlantic University
Boca Raton, FL 33431

Robert.Lubarsky@alum.mit.edu

October 19, 2019

Abstract

Feedback is oracle computability when the oracle consists exactly of
the con- and divergence information about computability relative to that
same oracle. Here we study the feedback version of the hyperjump.
keywords: hyperjump, feedback, Kleene’s O
AMS 2010 MSC: 03D60,03D70

1 Introduction

Imagine a notion of computability which allows for an oracle. A natural choice of
oracle is the halting problem, the set of halting programs. What if the programs
in the oracle were exactly the halting programs relative to that same oracle?

That is the essence of feedback. There is not (yet) a general definition of
feedback, one which is based on an unspecified notion of computation, perhaps a
notion with some properties given axiomatically. What we do have are particular
examples of feedback, including feedback Turing machines [1,2], feedback infinite
time Turing machines [8], and feedback primitive recursion [1, 2]. Experience
has shown that the way feedback is defined has to be adapted to each different
setting. Hence it is useful and interesting to examine more instances of feedback.
The purpose of this work is to introduce feedback hyperjump.

There are several aspects of this that could be of interest. There are nat-
urally not one but two different kinds of feedback for the hyperjump. Called
below strict and loose, the difference between them is that the loose version has
a kind of built-in parallelism. If there were a general definition of feedback then
there should be only one kind of feedback hyperjump, but as it turns out we see
no prima facie reason to choose one of strict and loose over the other. Another
aspect that bears mention is that, in both cases, the central concept is arguably
that of well-foundedness, but it plays a two-faced role. In some more detail, with
feedback the escape from paradox threatened by diagonalization is provided by
the possibility of computations freezing. For instance, if a computation asks the

1

oracle about itself, then, in deciding what to answer, that same computation
must be run, which will eventually ask the oracle about itself, ad infinitum.
More generally, if a computation involves an infinite nested chain of oracle calls,
then the oracle (depending on the setting) may not have a good answer and
the computation could freeze. So the ill-foundedness of the tree of oracle calls
(typically) leads to the computation freezing. On the other hand, considering
O as a simple example of a hyperjump (the hyperjump of ∅), membership of n
in O is given by the well-foundedness of the tree of ordinal notations less than n
(less than in the sense of <O). Conversely, non-membership in O (in the inter-
esting cases) is witnessed by the ill-foundedness of the induced tree of potential
ordinal notations. With feedback, this is just the kind of information we want
to capture. So ill-foundedness here will give us positive information. In the
end, we will need to distinguish between two different kinds of trees, the tree of
sub-computations and the tree of ordinal notations, the well- or ill-foundedness
of each having very different consequences. Actually, this description is clean
only for strict feedback hyperjump; for the loose version, as a kind of parallelism,
even an ill-founded subcomputation tree can lead to a non-freezing computation.
Ultimately the point for the moment is that we will be taking a very close look
at the well-foundedness of trees associated with these computations. Finally,
the results themselves might be of interest, as providing alternate descriptions
of some ordinals which have already appeared in the literature.

To simplify the exposition, instead of defining the feedback hyperjump of
an arbitrary real X, this will be done for only the empty set; the relativization
to an arbitrary X is straightforward. The next section will review some of the
basics of the regular hyperjump of 0, a.k.a. O; all of this material is standard
for the field, and serves only as a refresher and to introduce some of the notation
and terminology we will use. The sections after that will study strict and loose
feedback hyperjumps respectively.

To provide some historical context, feedback was clearly identified in [12] (pp.
406-407), although the topic was not pursued at that time. It was re-introduced
in [8]. For an overview, see [2].

It should be mentioned that, as of this writing, not all of the proofs are
complete. That notwithstanding, the author believes that they are far enough
along to be convincing, and that the notions introduced are interesting enough
to warrant public exposition.

2 Background on O
For a much more thorough introduction to admissibility, O, and such like, we
refer the reader to [4] or [13]. Recall the mutual inductive definitions of Kleene’s
O and of the partial order <O on O. Regarding the former, O is the least set
such that

1. 1 ∈ O,

2. if n ∈ O then 2n ∈ O, and

2

3. if {e} is total, and ∀n {e}(n) <O {e}(n+ 1), then 3 · 5e ∈ O.

For the latter, <O is the least transitive relation on O such that n <O 2n and
{e}(n) <O 3 · 5e. (Notice that this is finer than the ordering on the ordinals
represented by the members of O.) Numbers not in O are incomparable with
everything.

Given n ∈ O, {k | k <O n} is naturally ordered as a tree, with root n.
The children of n are given by the primitive relations just mentioned, i.e. n
is the unique child of 2n, and if n = 3 · 5e then the numbers {e}(k) are the
children of n. This tree is well-founded. In fact, that essentially characterizes
the members of O. That is, every n ∈ N, whether in O or not, induces such a
tree Tn, defined recursively, the well-foundedness of which, or not, determines
membership in O. We think of Tn, and related trees to be defined later, as the
tree of ordinal notations, although it would be more accurate to call it the tree
of potential ordinal notations, since some entries may not actually be ordinal
notations (making of course n also not an ordinal notation); the latter name
being more cumbersome, we stick with the former.

Definition 1. 1. T1 is the tree consisting of the single node 1.

2. For n 6= 0, T2n has root 2n, which has a unique child n, which is the root
of the subtree Tn.

3. T3·5e has root 3 · 5e, with children each {e}(k) which is defined, which is
the root of the subtree T{e}(k).

4. In all other cases, Tn consists of the single node n.
We say that the tree Tn is ill-formed if

1. either Tn contains a node not of the form 2m or 3 · 5e,

2. or Tn contains a node 3 · 5e, and either {e} is partial, or, for some k,
{e}(k) 6∈ T{e}(k+1).

If Tn is not ill-formed then we say it is well-formed.

Proposition 1. n ∈ O iff Tn is well-formed and well-founded.

It is easy to see that there are n’s with Tn well-formed and ill-founded: work
in some non-standard model of some kind of set theory (say KP or anything
stronger) with standard part ωCK1 , and let n be a notation (as interpreted in
that model) for some non-standard ordinal.

3 Strict Feedback Hyperjump

We will ultimately define the feedback oracle SO, or strict feedback O. With
regular (as opposed to feedback) oracle computation, an oracle can be taken to
be a set, and an oracle query returns YES or NO depending upon whether the
number queried is in the oracle or not. With feedback oracle computation, this

3

will not work. One cannot avoid freezing, the possibility that the oracle just
doesn’t answer; this is how diagonalization is avoided. So a feedback oracle is
taken to be a partial function, which on its domain returns either Y or N. A
query which is not in the domain of an oracle is said to be a freezing query
(relative to that oracle); if during the course of a computation the oracle is
asked a freezing oracle query, it does not answer, and that computation freezes.
In addition, our oracle will have to answer two different types of questions: not
only “n ∈ SO?”, but also “m <SO n?”. So a feedback oracle is a partial
function from the set of queries of the form “n ∈ SO?” and “m <SO n?” to
{Y,N}.

Let P be a feedback oracle. By way of notation, {e}P is Turing computability
relative to P .

The trees Tn defined in the previous section are sufficient to witness mem-
bership in O; more crucially, they are necessary to witness non-membership in
O. Since non-membership in SO needs to be witnessed positively, we have need
of the analogue Un of Tn, also called the tree of ordinal notations, appropriate
for the current setting. The definition of Un is identical to that of Tn, except
that the computations involved are feedback computations, with notation 〈e〉
and 〈e〉(k), depending on whether the program e calls for an input. (Whether
angle brackets 〈〉 are meant as feedback computation, as in 〈e〉(k), or as forming
a tuple, as in the ordered pair 〈a, b〉, should be clear from the context. Typically
one argument 〈e〉 means feedback, and more than one a tuple.) Since we are
in the midst of defining these very computations, in order to avoid circularity
we must first define UPn , where P is a feedback oracle. We will then use this
to define a one-step procedure from the set of feedback oracles to itself, and
observe that this procedure is positive in P (i.e. P ⊆ Q implies UPn ⊆ UQn).
Then on general principles there will be a least fixed point of that procedure,
which we will call SO. With SO in hand, the ultimate tree of interest Un can
be taken to be USOn .

Terminology. When building a tree Ta recursively from a parameter a,
we will typically give the children b of the root, and then want to continue
defining the descendants of b in Ta as essentially the members of Tb. We will
give some precise definitions here, to fall back on as need be, although we may
abuse notation for convenience (for instance sometimes identifying a piece of
code, when convergent, with its output, or identifying a tuple of length 1 with
its only entry). A tree is a set of tuples of natural numbers of positive length,
closed under truncation. The label of a node of a tree is the last entry of the
node as a tuple. For instance, the tree Ta will have root 〈a〉, which is labeled a.
If σ is a node in T , to append a tree U beneath σ in T means to include in
T all tuples of the form σ_τ , where τ is a node in U (and _ is concatenation).

Definition 2. 1. UP1 is the tree consisting of only the root, labeled 1.

2. For m 6= 0, UP2m has root labeled 2m, which has a unique child labeled m,
and UPm is appended to UP2m beneath the root.

3. UP3·5e has root labeled 3 · 5e, with a child labeled by the pair 〈e, k〉 for each

4

k ∈ N1; if {e}P (k) is defined, then append UP{e}P (k) beneath the root, by

abuse of notation identifying the label 〈e, k〉 with the label {e}P (k) of the
root of UP{e}P (k); if {e}P (k) is not defined (either freezing or divergent)

then the node labeled 〈e, k〉 has no children.

4. In all other cases, UPn consists of a single node labeled n.
We say that UPn freezes if there is a node in UPn labeled 〈e, k〉 such that

{e}P (k) freezes.
UPn is ill-formed if

1. either UPn contains a node not of the form 2m or 3 · 5e,

2. or UPn contains a node 3 · 5e, and either {e}P is partial, or, for some k,
the oracle call “{e}P (k) <P {e}P (k + 1)?” returns N.

If UPn does not freeze and is not ill-formed then we say it is well-formed.

Proposition 2. If UPn does not freeze and Q ⊇ P , then UQn = UPn .

Viewing a feedback oracle P as giving partial information about a fixed point
feedback oracle, P induces its own version of answers to oracle queries, which
we want to view as the successor feedback oracle to P , hence the notation P+.

Definition 3. 1. P+(n ∈ SO?) = Y if UPn is well-formed and well-founded.

2. P+(n ∈ SO?) = N if UPn either is not freezing and ill-formed, or is
well-formed and ill-founded.

3. P+(m <SO n?) = Y if P+(n ∈ SO?) = Y and m 6= n is a node in UPn .

4. P+(m <SO n?) = N if P+(n ∈ SO?) = N , or if P+(n ∈ SO?) = Y and
either m = n or m is not a node in UPn .

Proposition 3. P+(m <SO n?) returns a value iff P+(n ∈ SO?) returns a
value. Also, P+(n ∈ SO?) returns a value iff UPn does not freeze.

Proposition 4. The definition of P+ is positive in P . Hence if P ⊆ Q then
P+ ⊆ Q+.

The preceding proposition justifies the following.

Definition 4. SO or strict O is the least fixed point of the operation P 7→ P+.
Un is USOn .

Sometimes we think of SO not as a feedback oracle but rather as a partial
set of numbers, as captured by the following convention; which way to think
about SO should always be clear from the context.

Notation:

1This child is to be thought of as a piece of syntax acting as a placeholder, and not, for
instance, as feedback computation, for which angle brackets 〈〉 are also used.

5

• “n ∈ SO” is an abbreviation for SO(n ∈ SO?) = Y .

• “n 6∈ SO” is an abbreviation for SO(n ∈ SO?) = N .

• “n ? SO” is an abbreviation for n ∈ SO? not being in the domain of SO.

• “m <SO n” is an abbreviation for SO(m <SO n?) = Y .

• “m 6<SO n” is an abbreviation for SO(m <SO n?) = N .

• “m ?SO n” is an abbreviation for m <SO n? not being in the domain of
SO.

• 〈e〉 is the computation {e}SO.

• Q is said to be a freezing query if it is freezing relative to SO, i.e. not in
the domain of SO.

Theorem 5. SO is a system of notation for ordinals through the least recur-
sively inaccessible ordinal α, and is a complete Σ1 set over Lα.

In order to prove this, we will need witnesses within Lα for assertions like
n ∈ SO and n 6∈ SO. Of course this will involve the trees of ordinal notation
Un. (Whether they are well- or ill-founded will determine whether n is in or
out of SO.) It will also involve the definition of SO as a least fixed point.
Least fixed points of positive inductive definitions can be viewed as developed
in stages indexed by the ordinals. In our case, elements enter SO at later stages
because of computations based on fragments of SO from earlier stages, which
are themselves based on sub-computations from yet earlier stages. It turns out
to be useful to organize these sub-computations into a tree, the well-foundedness
of which, or not, will be crucial. Please note that the trees of sub-computations
are not to be confused with the trees of ordinal notations.

Definition 5. For e a natural number and Q an oracle query, the trees Se and
SQ (S for sub-computations) are defined recursively.

For Se, the root is e. Start running the oracle Turing computation {e}2. If
it makes an oracle query Q, then append SQ beneath the root in Se. If the oracle
SO returns an answer to Q, then the computation {e} continues. Similarly if
at any time the run of {e} makes an oracle call R, then SR is appended beneath
the root in Se, with the root of SR being a child of e to the right of all earlier
oracle calls Q.

For SQ, the root is Q. Whether Q is n ∈ SO? or m <SO n?, let nQ be
n. To answer Q one would need to consider UnQ

. The only nodes in UnQ
that

require any computation are nodes labeled 〈e, k〉. Append S〈e,k〉 for each such
〈e, k〉 beneath the root in SQ.

Proposition 6. 〈e〉 is non-freezing iff Se is well-founded, and Q is non-freezing
iff SQ is well-founded.

2Sometimes we will have occasion to consider the computation {ē}(k) instead. Then im-
plicity e = 〈ē, k〉.

6

Proof. First we show inductively on ranks that if Se resp. SQ is well-founded
then 〈e〉 resp. Q is non-freezing.

The immediate sub-trees of Se are the SQ’s, where the Q’s are e’s oracle
queries. If Se is well-founded then each such SQ has smaller rank, so Q is
non-freezing, hence the run of 〈e〉 does not freeze.

To say that Q is non-freezing means that Q is in the domain of SO. Since
SO is a fixed point of the operation P 7→ P+, it suffices to show that Q is in the
domain of SO+. By an earlier proposition, that holds iff USOnQ

does not freeze.

Toward that end, we must consider only nodes of USOnQ
labeled 〈e, k〉. For any

such e and k, S〈e,k〉 is an immediate sub-tree of SQ. Hence it has lower rank,
so inductively 〈e〉(k) is non-freezing.

The converse hinges on SO being the least fixed point: there is no need to
go beyond the realm in which the trees of sub-computations are well-founded.
Toward this end, let P be SO � {Q | SQ is well-founded}. We will show that P
is a fixed point, which suffices.

Let Q be a query. We need to show that if P+(Q) returns an answer then so
does P (Q). Because P ⊆ SO and SO is a fixed point, P+ ⊆ SO. That means
that Q is in the domain of SO. To get Q to be in the domain of P , we need only
show that SQ is well-founded. The immediate sub-trees of SQ are all of the form
S〈e,k〉, for a node labeled 〈e, k〉 from UnQ

. Because P+(Q) is defined, by the
proposition UPnQ

does not freeze. Because SO ⊇ P , UnQ
= USOnQ

= UPnQ
. Hence

all of the nodes 〈e, k〉 we must consider from UnQ
are already in UPnQ

. Because

UPnQ
does not freeze, every such {e}P (k) does not freeze. That means that when

running {e}(k), every time an oracle query R is made, the oracle P responds.
By the definition of P , SR is well-founded. Since the immediate sub-trees of
S〈e,k〉 are all of that form, S〈e,k〉 is well-founded. Hence SQ is well-founded.

Corollary 7. Un is not freezing iff Sn∈SO? is well-founded.

We are now ready to prove the main theorem, that SO is a complete Σ1 set
over the least recursively inaccessible Lα.

Proof. Sketch of proof: Let P be SO restricted to those queries Q with SQ ∈ Lα.
We will show that P is a fixed point. It is then immediate that SO is Σ1 definable
over Lα, as SO(Q) = Y resp. N iff there are a tree SQ which is well-founded
and a computation witnessing the answer Y resp. N .

All of the statements of interest, when true, have witnesses. For instance,
that n ∈ SO is witnessed by Sn∈SO (as well as a ranking function to the
ordinals), to show that Un is not freezing, and Un itself (as well as witnesses that
Un is well-formed and well-founded). That 〈e〉 does not freeze is witnessed by
Se (along with its ranking function). Of course, the constructions of the objects
Un, Se, SQ serve at witnesses that those objects are what they are purported to
be. Hence we can think of these objects as being generated as we ascend the
L-hierarchy. This justifies the notation Uβn , S

β
e , etc., as Un resp. Se as defined

over Lβ , using only the witnesses within Lβ . We will show that over Lα no new
computations are defined over Lα, and that Un = Uαn , Se = Sαe , SQ = SαQ.

7

If 〈e〉 converges then that is witnessed by a finite run of a Turing machine,
along with the witnesses to finitely many oracle calls. If all of the oracle call
witnesses are in Lα, so is this finite sequence.

If 〈e〉 diverges then that is witnessed by an ω-sequence which is the divergent
run of 〈e〉, along with a sequence of witnesses to oracle calls of length at most
ω. If each such witness is in Lα, then by the admissibility of Lα so is the
ω-sequence. Then the run of 〈e〉 is definable over that latter sequence.

In building Un, work on one level at a time. (The root is level 0, its children
level 1, etc.) It is immediate to determine if a node has any children and what
those children are, except for nodes labeled 3 · 5e. Since Un is (by assumption)
not freezing, each child 〈e, k〉 has a witness as to whether 〈e〉(k) converges or
diverges. Since each level can be arranged in an ω-sequence, this induces a total
function from ω to these witnesses. By admissibility this function is in Lα.
Furthermore, we have to repeat this construction on all ω-many levels of Un,
which again by admissibility is in Lα.

Se is essentially the witnesses to the oracle calls from above that 〈e〉 does
not freeze.

For SQ well-founded, UnQ
was already seen to be in Lα. The immediate sub-

trees of SQ are the S〈e,k〉’s for 〈e, k〉 a node in UnQ
. In Lα there is a sequence

of such nodes of length at most ω. If each S〈e,k〉 were in Lα, then again by
admissibility the sequence of such is in Lα, which puts SQ into Lα.

Finally, in order to answer an oracle question Q, the only time Q has an
answer is when UnQ

is not freezing. So then UnQ
is in Lα, as above. Whether it

is ill-formed or not is witnessed within Lα, again using the admissibility of Lα.
When UnQ

is well-formed, whether it is well-founded is also witnessed within
Lα, this time using the fact that α is a limit of admissibles: if a tree is in Lα,
then a ranking function for the tree’s well-founded part is definable over the
least admissible set containing the tree, and hence is in Lα.

The harder direction is to show that Lα is a lower bound, in that every
real in Lα is SO-computable and moreover that Σ1 questions about Lα can be
converted uniformly to questions about membership in SO. It should be clear
from the presence of the oracle calls that the SO-computable reals are closed
under hyperjump. For instance, O is computable: for n to be a candidate for
membership in O, when building Un no computations along the way may consult
with an oracle, so there is no possibility for Un to freeze. Hence the oracle answer
to n ∈ SO? is the correct information for whether n is in O. Since this argument
relativizes, the computable reals are closed under the hyperjump. In particular,
O exists, as do O′,O′′, etc. It is not hard to define the join of the O(n)’s: split
the work tape up into ω-many infinite tapes, and dedicate the nth tape to O(n).
So the computable reals go beyond the first limit of admissibles.

To show however that we can go past any inadmissible limit of admissibles,
this needs in some form the Gandy Selection Theorem, that the computable
predicates are closed under a search through ω. This turns a fact of inadmis-
sibility – ∀i ∈ ω ∃Ai φ(i, Ai) – into a computable sequence 〈Ai〉i∈ω. Gandy
Selection can be proved via a Stage Comparison Theorem.

8

4 Loose Feedback Hyperjump

In the inductive generation of O and SO, there is really no difference in the ways
numbers get put into those sets, the ways numbers get accepted as ordinal no-
tations. The difference between them is that SO contains negative information
too, that SO will tell you when something is not a member of SO. This nega-
tive information is essentially the ill-foundedness of a certain tree (Tn resp. Un).
For O, there was no possibility of Tn being freezing, whereas some Un’s most
certainly are. It is part of the definition of SO that for an oracle call “n ∈ SO?”
to be non-freezing the tree Un must be non-freezing. The requirement that all
nodes in Un be non-freezing can be explained or justified by thinking of Un
being generated by a (transfinite) breadth-first search. That is, first evaluate
all the computations on the first level of Un, then all those on the second level,
and so on. After all ω-many levels, one can see whether the tree is well-founded.
If any of those computations freezes, then this procedure cannot be completed.

This outcome, that a single freezing node in Un freezes the question n ∈ SO?,
is necessary if the answer is to be “yes”, because a “yes” answer is to be taken
as a guarantor of Un’s well-foundedness. Imagine by way of contrast that some
node of an otherwise well-founded tree were freezing. That freezing happens
when a particular oracle call is made. You can think of the machine at that
point as waiting for a response. This waiting can be taken to be measured
along the ordinals as indexing L, but it does not have to be. As an alternative,
while we are studying in this paper the semantics of the least fixed point, we
don’t have to. Perhaps a larger fixed point is generated by some random (albeit
appropriate) computation all of a sudden no longer freezing. Perhaps such
sudden removal of blockages can be organized in a partial order, like a kind
of (or actual!) Kripke model. Then time could be taken as movement along
this partial order. There could be other interpretations of time. A conservative
way of thinking about freezing is that one should use no information about a
freezing node, not even that it is freezing. So back to our pseudo well-founded
tree with one freezing node. If that node ever gets unstuck, depending on what
happens after that, the tree could become ill-founded. This issue does not come
up if instead Un is not freezing: Un cannot change at all, even as or if the oracle
changes; hence a well-founded Un will remain well-founded.

In contrast, such prudence is not necessary for ill-foundedness. Once a tree
is ill-founded, even as the tree grows it will remain ill-founded. Allowing an
ill-founded tree, even when freezing, to qualify as a witness that a number is
not ordinal notation is what we are calling loose feedback O, or LO. This
allowance can be explained or justified by thinking of Un as being generated
while ascending through L. As one climbs through the Lα’s, α increasing, more
computations become completed (i.e. converge or diverge), so more nodes get
placed into Un. If at any stage Un is seen to be ill-founded, even if it still
contains freezing nodes, then we can take that as a witness that n 6∈ LO.

In comparing the negative information in LO with that of SO, it comes down
to a kind of parallelism. Normally in mathematical logic parallelism plays no
role, since it can be simulated by sequential computation via dovetailing. This

9

does not work with feedback around: once a freezing oracle call is made, the en-
tire computation stops. This was used in [9] to define parallel feedback (Turing)
computability, by which an ω-sequence of machines was run in parallel, which
was shown to be stronger than (sequential) feedback Turing computability. Par-
allelism was also defined for infinite time Turing machines [8] (and ultimately
analyzed in [16], even if the framework there is Kleene’s higher types [6], as
the results are translatable to feedback ITTMs). In the current setting, it’s as
though we’re searching for an infinite branch in a tree, even if another part of
the tree is freezing. Instead of running ω-many machines in parallel, what we
have here can be called tree parallelism.

We will make use of the same trees UPn as in the previous section. Given
an oracle, there is no change from before about the induced tree of ordinal
notations. The difference from before is the inductive step on feedback oracles,
there called P+, here P&.

Definition 6. 1. P&(n ∈ SO?) = Y if UPn is well-formed and well-founded.

2. P&(n ∈ SO?) = N if UPn is either ill-formed or ill-founded.

3. P&(m <SO n?) = Y if P&(n ∈ SO?) = Y and m 6= n is a node in UPn .

4. P&(m <SO n?) = N if P&(n ∈ SO?) = N , or if P&(n ∈ SO?) = Y and
either m = n or m is not a node in UPn .

Note that the only difference between P+ and P& is in clause 2.3

Proposition 8. The definition of P& is positive in P . Hence if P ⊆ Q then
P& ⊆ Q&.

The preceding proposition justifies the following.

Definition 7. LO or loose O is the least fixed point of the operation P 7→ P&.
Vn is ULOn .

While we’re at it, we will also define the trees of sub-computations S&
e and

S&
Q . Formally speaking, they are defined the same way Se and SQ were in the

previous section, only with reference to SO replaced by LO. This affects S&
e

directly: if {e} makes an oracle call, it is more likely to get an answer from LO
3It bears mention that there are several options for dealing with this clause. In all cases,

the evidence that n is not an ordinal notation is that its tree UPn of smaller ordinal notations
is bad somehow, either ill-formed or ill-founded. For P+, we took this in the strictest possible
sense: UPn had to be non-freezing in order to qualify as evidence. For P&, there is no such
requirement on UPn ever; once we have any evidence that UPn will not be acceptable, we take
it. In contrast with both of these, one could work in the middle. That is, the reasons that UPn
activate clause 2 are that it has a node not of the right form, or that the function named by a
node is partial, or that the function named by a node is not increasing (in the sense of <P),
or that the tree has an infinite descending path; the requirement that UPn be non-freezing
could, in principle, be levied on some and not all of these conditions. We find the two extreme
cases isolated here to be the most natural ones; we believe that the only condition of any real
importance is the well-foundedness of UPn , and that varying the others will make no difference;
determining this is left for future work.

10

than SO. Then this affects S&
Q , which is defined in terms of S&

e the way SQ is
defined in terms of Se.

Definition 8. Let Γ be a collection of formulas, X a class of ordinals, and ν+X

the least member of X greater than ν. We say that α is Γ-reflecting on X if,
for all φ ∈ Γ, if Lα+X |= φ(α), then for some β < α, Lβ+X |= φ(β).

We are interested in the case Γ = Π1 and X = the collection of admissible
ordinals. For this choice of X, we abbreviate ν+X by ν+, which is standard
notation for the next admissible anyway. This is called Π1 gap-reflection on
admissibles. Let γ be the least such ordinal.

It may seem like a strange notion. But this is not the first time it has come
up. Extending work in [11], it was shown in [7] that such ordinals are exactly
the Σ1

1 reflecting ordinals. (In this context, the superscript 1 refers not to reals
but to subsets of the structure over which the formula is being evaluated.) The
reason this topic came up in the latter paper is that a particular case of its main
theorem is that γ is the closure point of Σ2-definable sets of integers in the µ-
calculus. (The µ-calculus is first-order logic augmented with least and greatest
fixed-point operators; see [3]. In this context, Σ2 refers to the complexity of the
fixed points in the formula, namely, in normal form, a least fixed point in front,
followed by a greatest fixed point, followed by a fixed-point-free matrix.) In [11]
it was also shown that the least Σ1

1 reflecting ordinal is also the closure point of
Σ1

1 monotone inductive definitions. (Here the superscript does refer to reals.)
Furthermore, that is the same least ordinal which provides winning strategies
for all Σ0

2 games (Solovay, see [10] 7C.10 or [15]). (If Player I has a winning
strategy, then there is one in Lγ ; if II does, then there is one in Lγ+ .) As though
that weren’t enough, [14] shows the equivalence of closure under Σ1

1 monotone
inductive definitions with the Σ1

1 Ramsey property. (For all Σ1
1 partitions P of ω

there is an infinite set H ⊆ ω such that the infinite subsets of H are either all in
P or all not in P .) An ordinal α is Gandy if the α-computable well-orderings are
cofinal through α+; γ is the least non-Gandy ordinal [5]. Closest of all to the
work being discussed here, γ is also the closure ordinal of context-dependent
deterministic parallel feedback Turing computability [2, 9]. With all of these
applications, this definition counts as natural.

Theorem 9. LO is a system of notation for ordinals through the least ordinal
γ which is Π1 gap-reflecting on admissibles, and is a complete Σ1 set over Lγ .

Proof. It is easier to show that γ is an upper bound. The notations V βn , S
&β
e , S&β

Q

mean Vn, S
&
e , S

&
Q as interpreted in Lβ . In the definition of P&, clauses 1, 3,

and 4 are the same as for P+. So by the arguments for the previous section
LOγ is closed under those clauses by the admissibility of γ. Similarly for the
ill-formedness condition of clause 2: if V γn is ill-formed, then so is some V βn
(β < γ). Now suppose V γn were ill-founded. Because V γn is definable over Lγ ,
its ill-foundedness is a Π1 statement over Lγ+ with parameter γ. Therefore, by
the choice of γ, there is a smaller β with Lβ+ |= “V βn is ill-founded.” So there is
already a witness to n not being in LO in Lγ .

11

To show that γ is a lower bound, we will interpret, or simulate, parallel feed-
back Turing computability [2, 9] within (computability relative to) LO. Since
the former has already been shown to compute everything in Lγ , this suffices.
The reason this reduction would hold is that the same structures are involved
with both of them. In more detail, the LO computations are run by the trees Vn
of ordinal notations and S&

e , S
&
Q of sub-computations. For a computation not

to freeze, it is not necessary that Vn not freeze (as opposed to Un), much less
be well-founded. For S&

e and S&
Q , it is not necessary that they be well-founded

(as opposed to Se and SQ), just well-founded in the right way: an infinite path
through Vn determines infinitely many sub-trees (rooted on the first level) of
SQ, where Q is n ∈ LO?, and they all must be well-founded. Now consider the
trees that come up in parallel feedback. Most prominent is C(e,n), the tree of
runs. In order for the parallel feedback computation 〈e〉(n) not to freeze, it is
not necessary that C(e,n) not freeze; rather, C(e,n) could have a terminal node,
which is the uninteresting case in all the proofs, or it is ill-founded. This is the
same behavior as the Vn’s. The work on parallel feedback did not discuss the
tree of sub-computations, because it no longer had to be well-founded; in fact,
the only well-foundedness that matters is that of an infinite set of sub-trees as
determined by some infinite path through C(e,n). The stopping conditions are
the same in both cases. That is why ultimately each can code the other.

References

[1] Nathanael Ackerman, Cameron Freer, and Robert Lubarsky, “Feedback Turing Com-
putability, and Turing Computability as Feedback,” Proceedings of LICS 2015, Ky-
oto, Japan; also available at http://math.fau.edu/lubarsky/pubs.html

[2] Nathanael Ackerman, Cameron Freer, and Robert Lubarsky, “An Introduction to Feed-
back Turing Computability,” Annals of Pure and Applied Logic, special issue on
LFCS ’16, submitted; also available at http://math.fau.edu/lubarsky/pubs.html

[3] A. Arnold and D. Niwinski, Rudiments of µ-Calculus, Studies in Logic and the
Foundations of Mathematics, v. 146, North Holland, 2001

[4] Jon Barwise, Admissible Sets and Structures, Perspectives in Mathematical
Logic, Springer-Verlag, Berlin 1975

[5] Richard Gostanian, “The Next Admissible Ordinal,” Annals of Mathematical Logic,
v. 17 (1979), pp. 171-203

[6] Stephen Cole Kleene, “Recursive functionals and quantifiers of finite types. I,” Trans-
actions of the American Mathematical Society, v. 91 (1959), pp. 1–53

[7] Robert Lubarsky, “µ-definable sets of integers,” The Journal of Symbolic Logic, v.
58 (1) (1993), pp. 291–313

[8] Robert Lubarsky, “ITTMs with Feedback,” in Ways of Proof The-
ory (Ralf Schindler, ed.), pp. 341-354. Ontos (2010); also available at
http://math.fau.edu/lubarsky/pubs.html

[9] Robert Lubarsky, “Parallel Feedback Turing Computability,” in Proceedings of LFCS
2016, Lecture Notes in Computer Science 9537 (Sergei Artemov and Anil Nerode,
eds.), pp. 236-250

[10] Yiannis Moschovakis, Descriptive Set Theory, First edition North Holland (1987);
second edition AMS (2009)

12

[11] Wayne Richter and Peter Aczel, “Inductive Definitions and Reflecting Properties of Ad-
missible Ordinals,” in: Generalized Recursion Theory (Fenstad and Hinman, eds.),
pp. 301-381. North-Holland (1974)

[12] Hartley Rogers Theory of Recursive Functions and Effective Computability,
McGraw-Hill (1967)

[13] Gerald Sacks, Higher Recursion Theory, Perspectives in Mathematical Logic,
Springer-Verlag, Berlin 1990, pp. xvi+344

[14] Kazuyuki Tanaka, “The Galvin-Prikry Theorem and Set Existence Axioms,” Annals of
Pure and Applied Logic 42 (1), pp. 81-104 (1989)

[15] Kazuyuki Tanaka, “Weak Axioms of Determinacy and Subsystems of Analysis II (Σ0
2

Games),” Annals of Pure and Applied Logic 52 (1-2), pp. 181-193 (1991)

2008

[16] Philip Welch, “Gδσ-games and generalized computation,” to appear

13

	Introduction
	Background on O
	Strict Feedback Hyperjump
	Loose Feedback Hyperjump

