On the Failure of BD-N

Robert S. Lubarsky
Florida Atlantic University

Constructive Mathematics:
Proofs and Computation Fraueninsel, Chiemsee

June 7-11, 2010

Introduction

Definition

A subset A of \mathbb{N} is pseudo-bounded if every sequence $\left(a_{n}\right)$ of members of A is eventually bounded by the identity function: $\exists N \forall n>N a_{n}<n$ (equivalently, $a_{n} \leq n$).

Introduction

Definition

A subset A of \mathbb{N} is pseudo-bounded if every sequence $\left(a_{n}\right)$ of members of A is eventually bounded by the identity function: $\exists N \forall n>N a_{n}<n$ (equivalently, $a_{n} \leq n$).

Example
Any bounded set.

Introduction

Definition

A subset A of \mathbb{N} is pseudo-bounded if every sequence $\left(a_{n}\right)$ of members of A is eventually bounded by the identity function: $\exists N \forall n>N a_{n}<n$ (equivalently, $a_{n} \leq n$).

Example
Any bounded set.
BD- \mathbb{N} : Every countable pseudo-bounded set is bounded.

Introduction

Definition

A subset A of \mathbb{N} is pseudo-bounded if every sequence $\left(a_{n}\right)$ of members of A is eventually bounded by the identity function:
$\exists N \forall n>N a_{n}<n$ (equivalently, $a_{n} \leq n$).
Example
Any bounded set.
BD- \mathbb{N} : Every countable pseudo-bounded set is bounded.
BD- \mathbb{N} is true classically, intuitionistically, computably.

Introduction

Definition

A subset A of \mathbb{N} is pseudo-bounded if every sequence $\left(a_{n}\right)$ of members of A is eventually bounded by the identity function:
$\exists N \forall n>N a_{n}<n$ (equivalently, $a_{n} \leq n$).
Example
Any bounded set.
BD- \mathbb{N} : Every countable pseudo-bounded set is bounded.
BD- \mathbb{N} is true classically, intuitionistically, computably.
Question: How could it fail?

A topological counter-example

Let T be $\{f: \omega \rightarrow \omega \mid \operatorname{range}(f)$ is finite $\}$.

A topological counter-example

Let T be $\{f: \omega \rightarrow \omega \mid$ range (f) is finite $\}$.
A basic open set p is given by an unbounded sequence g_{p} of integers, with a designated integer $\operatorname{stem}(p)$, beyond which g_{p} is non-decreasing. $f \in p$ if $f(n)=g_{p}(n)$ for $n<\operatorname{stem}(p)$ and $f(n) \leq g_{p}(n)$ otherwise.

A topological counter-example

Let T be $\{f: \omega \rightarrow \omega \mid$ range (f) is finite $\}$.
A basic open set p is given by an unbounded sequence g_{p} of integers, with a designated integer $\operatorname{stem}(p)$, beyond which g_{p} is non-decreasing. $f \in p$ if $f(n)=g_{p}(n)$ for $n<\operatorname{stem}(p)$ and $f(n) \leq g_{p}(n)$ otherwise. Without loss of generality, $g_{p}($ stemp $) \geq \max \left\{g_{p}(i) \mid i<\operatorname{stem}(p)\right\}$.

A topological counter-example

Let T be $\{f: \omega \rightarrow \omega \mid$ range (f) is finite $\}$.
A basic open set p is given by an unbounded sequence g_{p} of integers, with a designated integer $\operatorname{stem}(p)$, beyond which g_{p} is non-decreasing.
$f \in p$ if $f(n)=g_{p}(n)$ for $n<\operatorname{stem}(p)$ and $f(n) \leq g_{p}(n)$ otherwise.
Without loss of generality, $g_{p}(s t e m p) \geq \max \left\{g_{p}(i) \mid i<\operatorname{stem}(p)\right\}$.
Let G be the canonical generic:
$p \Vdash G(n)=x$ iff $n<\operatorname{stem}(p)$ and $g_{p}(n)=x$.

A topological counter-example

Let T be $\{f: \omega \rightarrow \omega \mid$ range (f) is finite $\}$.
A basic open set p is given by an unbounded sequence g_{p} of integers, with a designated integer $\operatorname{stem}(p)$, beyond which g_{p} is non-decreasing.
$f \in p$ if $f(n)=g_{p}(n)$ for $n<\operatorname{stem}(p)$ and $f(n) \leq g_{p}(n)$ otherwise.
Without loss of generality, $g_{p}($ stemp $) \geq \max \left\{g_{p}(i) \mid i<\operatorname{stem}(p)\right\}$.
Let G be the canonical generic:
$p \Vdash G(n)=x$ iff $n<\operatorname{stem}(p)$ and $g_{p}(n)=x$.
Theorem
$T \Vdash r n g(G)$ is countable, pseudo-bounded, but not bounded. Also, $T \Vdash D C$.

DC and boundedness

Theorem
$T \Vdash r n g(G)$ is countable, pseudo-bounded, but not bounded. Also, $T \Vdash D C$. A is bounded: $\exists N \forall i \in A i<N$

DC and boundedness

Theorem
$T \Vdash r n g(G)$ is countable, pseudo-bounded, but not bounded. Also, $T \Vdash D C$.
A is bounded: $\exists N \forall i \in A i<N$
A is not bounded: $\neg \exists N \forall i \in A i<N$

DC and boundedness

Theorem
$T \Vdash r n g(G)$ is countable, pseudo-bounded, but not bounded. Also, $T \Vdash D C$.
A is bounded: $\exists N \forall i \in A i<N$
A is not bounded: $\neg \exists N \forall i \in A i<N$
A is unbounded: $\forall N \exists i \in A i>N$

DC and boundedness

Theorem

$T \Vdash r n g(G)$ is countable, pseudo-bounded, but not bounded. Also, $T \Vdash D C$.
A is bounded: $\exists N \forall i \in A i<N$
A is not bounded: $\neg \exists N \forall i \in A i<N$
A is unbounded: $\forall N \exists i \in A i>N$
Notice that if $A \subseteq \mathbb{N}$ is countable and pseudo-bounded then it is not unbounded.

DC and boundedness

Theorem

$T \Vdash r n g(G)$ is countable, pseudo-bounded, but not bounded. Also, $T \Vdash D C$.
A is bounded: $\exists N \forall i \in A i<N$
A is not bounded: $\neg \exists N \forall i \in A i<N$
A is unbounded: $\forall N \exists i \in A i>N$
Notice that if $A \subseteq \mathbb{N}$ is countable and pseudo-bounded then it is not unbounded.
What if A is not assume to be countable? Then DC (even CC) + A pseudo-bounded implies A is not unbounded.

DC and boundedness

Theorem

$T \Vdash r n g(G)$ is countable, pseudo-bounded, but not bounded. Also, $T \Vdash D C$.
A is bounded: $\exists N \forall i \in A i<N$
A is not bounded: $\neg \exists N \forall i \in A i<N$
A is unbounded: $\forall N \exists i \in A i>N$
Notice that if $A \subseteq \mathbb{N}$ is countable and pseudo-bounded then it is not unbounded.
What if A is not assume to be countable? Then DC (even CC) + A pseudo-bounded implies A is not unbounded.
Question: Is there an example of A pseudo-bounded and yet unbounded?

DC and boundedness

Theorem

$T \Vdash r n g(G)$ is countable, pseudo-bounded, but not bounded. Also, $T \Vdash D C$.
A is bounded: $\exists N \forall i \in A i<N$
A is not bounded: $\neg \exists N \forall i \in A i<N$
A is unbounded: $\forall N \exists i \in A i>N$
Notice that if $A \subseteq \mathbb{N}$ is countable and pseudo-bounded then it is not unbounded.
What if A is not assume to be countable? Then DC (even CC) + A pseudo-bounded implies A is not unbounded.
Question: Is there an example of A pseudo-bounded and yet unbounded?
Conjecture: In the topological model over the space of unbounded sets of naturals, the generic is pseudo-bounded and unbounded.

Proof

Theorem

$T \Vdash r n g(G)$ is countable, pseudo-bounded, but not bounded. Also, $T \Vdash D C$.
The proof that $\operatorname{rng}(G)$ is pseudo-bounded depends crucially on the following

Lemma

Let p be an open set forcing " $t \in \operatorname{rng}(G)$ ", and I an integer such that $\max _{n<\operatorname{stem}(p)} g_{p}(n) \leq I \leq g_{p}(\operatorname{stem}(p))$. Then there is a q extending p with the same stem and $g_{q}(\operatorname{stem}(q)) \geq I$ forcing " $t \leq I$ ".

Proof of the Main Lemma

Lemma

Let p be an open set forcing " $t \in \operatorname{rng}(G)$ ", and I an integer such that $\max _{n<\operatorname{stem}(p)} g_{p}(n) \leq I \leq g_{p}(\operatorname{stem}(p))$. Then there is a q extending p with the same stem and $g_{q}(\operatorname{stem}(q)) \geq I$ forcing " $t \leq I$ ".

Notation:

For $i \leq I$, let $p_{i} \subseteq p$ be such that
a) $\operatorname{stem}\left(p_{i}\right)=\operatorname{stem}(p)+1$,
b) $g_{p_{i}}(\operatorname{stem}(p))=i$, and
c) for $n \neq \operatorname{stem}(p)$, $g_{p_{i}}(n)=g_{p}(n)$.

Notice that $\bigcup_{i \in I} p_{i}=p$.

Proof of the Main Lemma

Lemma

Let p be an open set forcing " $t \in \operatorname{rng}(G)$ ", and I an integer such that $\max _{n<\operatorname{stem}(p)} g_{p}(n) \leq I \leq g_{\rho}(\operatorname{stem}(p))$. Then there is a q extending p with the same stem and $g_{q}(\operatorname{stem}(q)) \geq I$ forcing " $t \leq I$ ".

Proof.

If each p_{i} had a good extension q_{i}, then $\bigcup_{i} q_{i}$ is a good extension of p.

Proof of the Main Lemma

Lemma

Let p be an open set forcing " $t \in \operatorname{rng}(G)$ ", and I an integer such that $\max _{n<\operatorname{stem}(p)} g_{p}(n) \leq I \leq g_{\rho}(\operatorname{stem}(p))$. Then there is a q extending p with the same stem and $g_{q}(\operatorname{stem}(q)) \geq I$ forcing " $t \leq I$ ".

Proof.

If each p_{i} had a good extension q_{i}, then $\bigcup_{i} q_{i}$ is a good extension of p. So if p did not have a good extension, neither would some p_{i}.

Proof of the Main Lemma

Lemma

Let p be an open set forcing " $t \in \operatorname{rng}(G)$ ", and I an integer such that $\max _{n<\operatorname{stem}(p)} g_{p}(n) \leq I \leq g_{\rho}(\operatorname{stem}(p))$. Then there is a q extending p with the same stem and $g_{q}(\operatorname{stem}(q)) \geq I$ forcing " $t \leq I$ ".

Proof.

If each p_{i} had a good extension q_{i}, then $\bigcup_{i} q_{i}$ is a good extension of p. So if p did not have a good extension, neither would some p_{i}. By the same argument, neither would some extension of p_{i}, say $p_{i j}$. Similarly, neither would some extension of $p_{i j}$, say $p_{i j k}$.

Proof of the Main Lemma

Lemma

Let p be an open set forcing " $t \in \operatorname{rng}(G)$ ", and I an integer such that $\max _{n<\operatorname{stem}(p)} g_{p}(n) \leq I \leq g_{\rho}(\operatorname{stem}(p))$. Then there is a q extending p with the same stem and $g_{q}(\operatorname{stem}(q)) \geq I$ forcing " $t \leq I$ ".

Proof.

If each p_{i} had a good extension q_{i}, then $\bigcup_{i} q_{i}$ is a good extension of p. So if p did not have a good extension, neither would some p_{i}. By the same argument, neither would some extension of p_{i}, say $p_{i j}$. Similarly, neither would some extension of $p_{i j}$, say $p_{i j k}$. Continuing this infinitely often, we get a function $f \in p$.

Proof of the Main Lemma

Lemma

Let p be an open set forcing " $t \in \operatorname{rng}(G)$ ", and I an integer such that $\max _{n<\operatorname{stem}(p)} g_{p}(n) \leq I \leq g_{p}(\operatorname{stem}(p))$. Then there is a q extending p with the same stem and $g_{q}(\operatorname{stem}(q)) \geq I$ forcing " $t \leq I$ ".

Proof.

If each p_{i} had a good extension q_{i}, then $\bigcup_{i} q_{i}$ is a good extension of p. So if p did not have a good extension, neither would some p_{i}. By the same argument, neither would some extension of p_{i}, say $p_{i j}$. Similarly, neither would some extension of $p_{i j}$, say $p_{i j k}$. Continuing this infinitely often, we get a function $f \in p$. By assumption, some neighborhood of f forces a value of t, and since each $f(n) \leq I, t$ is forced to be ≤ 1.

Proof of the Main Lemma

Lemma

Let p be an open set forcing " $t \in \operatorname{rng}(G)$ ", and I an integer such that $\max _{n<\operatorname{stem}(p)} g_{p}(n) \leq I \leq g_{p}(\operatorname{stem}(p))$. Then there is a q extending p with the same stem and $g_{q}(\operatorname{stem}(q)) \geq I$ forcing " $t \leq I$ ".

Proof.

If each p_{i} had a good extension q_{i}, then $\bigcup_{i} q_{i}$ is a good extension of p. So if p did not have a good extension, neither would some p_{i}. By the same argument, neither would some extension of p_{i}, say $p_{i j}$. Similarly, neither would some extension of $p_{i j}$, say $p_{i j k}$. Continuing this infinitely often, we get a function $f \in p$. By assumption, some neighborhood of f forces a value of t, and since each $f(n) \leq I, t$ is forced to be $\leq I$. Such a neighborhood is a good extension of one of the p_{α} 's. Contradiction, so p has a good extension.

Proof of the Main Theorem

Theorem
$T \Vdash r n g(G)$ is countable, pseudo-bounded, but not bounded. Also, $T \Vdash D C$.

Proof.
Proof of pseudo-boundedness: Let $p \Vdash$ " $\left(a_{n}\right)$ is a sequence through rng(G)."

Proof of the Main Theorem

Theorem
$T \Vdash r n g(G)$ is countable, pseudo-bounded, but not bounded. Also, $T \Vdash D C$.

Proof.

Proof of pseudo-boundedness: Let $p \Vdash$ " $\left(a_{n}\right)$ is a sequence through $\operatorname{rng}(G)$." Without changing stem $\left(g_{p}\right)$ or $g_{p}(\operatorname{stem}(p)):=I$, extend p to $p_{0} \Vdash a_{l} \leq 1$.

Proof of the Main Theorem

Theorem

$T \Vdash r n g(G)$ is countable, pseudo-bounded, but not bounded.
Also, $T \Vdash D C$.

Proof.

Proof of pseudo-boundedness: Let $p \Vdash$ " $\left(a_{n}\right)$ is a sequence through $\operatorname{rng}(G)$. ." Without changing stem $\left(g_{p}\right)$ or $g_{p}(\operatorname{stem}(p)):=l$, extend p to $p_{0} \Vdash a_{l} \leq I$. Let k be such that $g_{p_{0}}(k)=I+1$. Preserving everything up through k, extend p_{0} to $p_{1} \Vdash a_{I+1} \leq I+1$.

Proof of the Main Theorem

Theorem

$T \Vdash r n g(G)$ is countable, pseudo-bounded, but not bounded.
Also, $T \Vdash D C$.

Proof.

Proof of pseudo-boundedness: Let $p \Vdash$ " $\left(a_{n}\right)$ is a sequence through $\operatorname{rng}(G)$." Without changing stem $\left(g_{p}\right)$ or $g_{p}(\operatorname{stem}(p)):=l$, extend p to $p_{0} \Vdash a_{l} \leq I$. Let k be such that $g_{p_{0}}(k)=I+1$. Preserving everything up through k, extend p_{0} to $p_{1} \Vdash a_{I+1} \leq I+1$. Continue through the natural numbers. The intersection of these open sets is an open set forcing $\left(a_{n}\right)$ to be eventually bounded by the identity function.

Anti-Specker Spaces

Definition

A metric space X satisfies the anti-Specker property if, for every metric space $Z \supseteq X$ and sequence $\left(z_{n}\right)(n \in \mathbb{N})$ through Z, if $\left(z_{n}\right)$ is eventually bounded away from each point in X, then $\left(z_{n}\right)$ is eventually bounded away from X.

Anti-Specker Spaces

Definition

A metric space X satisfies the anti-Specker property if, for every metric space $Z \supseteq X$ and sequence $\left(z_{n}\right)(n \in \mathbb{N})$ through Z, if $\left(z_{n}\right)$ is eventually bounded away from each point in X, then $\left(z_{n}\right)$ is eventually bounded away from X.

Theorem
(Bridges) BD-N implies that the anti-Specker spaces are closed under products.
Question (Bridges): Does the converse implication hold?

Anti-Specker Spaces

Definition

A metric space X satisfies the anti-Specker property if, for every metric space $Z \supseteq X$ and sequence $\left(z_{n}\right)(n \in \mathbb{N})$ through Z, if $\left(z_{n}\right)$ is eventually bounded away from each point in X, then $\left(z_{n}\right)$ is eventually bounded away from X.

Theorem

(Bridges) BD-N implies that the anti-Specker spaces are closed under products.
Question (Bridges): Does the converse implication hold?
Answer: No. In the topological model, the anti-Specker spaces are closed under products.

Extensional Realizability

Realizers are integers e, viewed as computable (a.k.a. recursive) functions $\{e\}$.

Example
Suppose $e \Vdash f: \mathbb{N} \rightarrow \mathbb{N}$,

Extensional Realizability

Realizers are integers e, viewed as computable (a.k.a. recursive) functions $\{e\}$.

Example

Suppose $e \Vdash f: \mathbb{N} \rightarrow \mathbb{N}$,
i.e. $e \Vdash \forall n \exists m f(n)=m$.

Extensional Realizability

Realizers are integers e, viewed as computable (a.k.a. recursive) functions $\{e\}$.

Example
Suppose $e \Vdash f: \mathbb{N} \rightarrow \mathbb{N}$,
i.e. $e \Vdash \forall n \exists m f(n)=m$.

Then $\forall n(\{e\}(n))_{1} \Vdash f(n)=\{e\}(n)_{0}$.

Extensional Realizability

Realizers are integers e, viewed as computable (a.k.a. recursive) functions $\{e\}$.

Example

Suppose $e \Vdash f: \mathbb{N} \rightarrow \mathbb{N}$,
i.e. $e \Vdash \forall n \exists m f(n)=m$.

Then $\forall n(\{e\}(n))_{1} \Vdash f(n)=\{e\}(n)_{0}$.
So every function from \mathbb{N} to \mathbb{N} is computable.

Extensional Realizability

Every function from \mathbb{N} to \mathbb{N} is computable: does that imply BD- \mathbb{N} ?

Extensional Realizability

Every function from \mathbb{N} to \mathbb{N} is computable: does that imply BD-N ? If A is countable, it's the range of a total function $f: \mathbb{N} \rightarrow \mathbb{N}$, and $f=\{e\}$.

Extensional Realizability

Every function from \mathbb{N} to \mathbb{N} is computable: does that imply BD-N? If A is countable, it's the range of a total function $f: \mathbb{N} \rightarrow \mathbb{N}$, and $f=\{e\}$.
If $\{e\}$ is bounded, then the bound (essentially) realizes that fact.

Extensional Realizability

Every function from \mathbb{N} to \mathbb{N} is computable: does that imply BD-N? If A is countable, it's the range of a total function $f: \mathbb{N} \rightarrow \mathbb{N}$, and $f=\{e\}$.
If $\{e\}$ is bounded, then the bound (essentially) realizes that fact. If $\{e\}$ is not bounded, then $\{\hat{e}\}(n)=$ "the least $k>n$ in the range of $\{e\}$ " realizes that $\{e\}$ is not pseudo-bounded.

Extensional Realizability

Every function from \mathbb{N} to \mathbb{N} is computable: does that imply BD-N? If A is countable, it's the range of a total function $f: \mathbb{N} \rightarrow \mathbb{N}$, and $f=\{e\}$.
If $\{e\}$ is bounded, then the bound (essentially) realizes that fact. If $\{e\}$ is not bounded, then $\{\hat{e}\}(n)=$ "the least $k>n$ in the range of $\{e\}$ " realizes that $\{e\}$ is not pseudo-bounded.
So any countable set of naturals is either realized to be bounded or realized not to be pseudo-bounded.

Extensional Realizability

Every function from \mathbb{N} to \mathbb{N} is computable: does that imply BD-N? If A is countable, it's the range of a total function $f: \mathbb{N} \rightarrow \mathbb{N}$, and $f=\{e\}$.
If $\{e\}$ is bounded, then the bound (essentially) realizes that fact. If $\{e\}$ is not bounded, then $\{\hat{e}\}(n)=$ "the least $k>n$ in the range of $\{e\}$ " realizes that $\{e\}$ is not pseudo-bounded.
So any countable set of naturals is either realized to be bounded or realized not to be pseudo-bounded.
Still, we would need a realizer for BD-N.

Extensional Realizability

Suppose $b \Vdash$ BD- \mathbb{N}.

Extensional Realizability

Suppose $b \Vdash$ BD- \mathbb{N}.
Let e_{0} be a code for enumerating $\{0\}$.

Extensional Realizability

Suppose $b \Vdash$ BD-N.
Let e_{0} be a code for enumerating $\{0\}$. Hence $\{b\}\left(e_{0}\right)>0$.

Extensional Realizability

Suppose $b \Vdash$ BD-N.
Let e_{0} be a code for enumerating $\{0\}$. Hence $\{b\}\left(e_{0}\right)>0$. By extensionality, if $\{i\}$ also enumerates $\{0\}$, then $\{b\}(i)=\{b\}\left(e_{0}\right)$.

Extensional Realizability

Suppose $b \Vdash$ BD-N.
Let e_{0} be a code for enumerating $\{0\}$. Hence $\{b\}\left(e_{0}\right)>0$.
By extensionality, if $\{i\}$ also enumerates $\{0\}$, then
$\{b\}(i)=\{b\}\left(e_{0}\right)$.
Given j, let j^{*} enumerate:
i) $\left\{0,\{b\}\left(e_{0}\right)\right\}$ if $\{b\}(j)=\{b\}\left(e_{0}\right)$, and
ii) $\{0\}$ otherwise.

Extensional Realizability

Suppose $b \Vdash$ BD-N.
Let e_{0} be a code for enumerating $\{0\}$. Hence $\{b\}\left(e_{0}\right)>0$.
By extensionality, if $\{i\}$ also enumerates $\{0\}$, then
$\{b\}(i)=\{b\}\left(e_{0}\right)$.
Given j, let j^{*} enumerate:
i) $\left\{0,\{b\}\left(e_{0}\right)\right\}$ if $\{b\}(j)=\{b\}\left(e_{0}\right)$, and
ii) $\{0\}$ otherwise.

By the Recursion Theorem, let $\{k\}=\left\{k^{*}\right\}$.

Extensional Realizability

Suppose $b \Vdash$ BD-N.
Let e_{0} be a code for enumerating $\{0\}$. Hence $\{b\}\left(e_{0}\right)>0$.
By extensionality, if $\{i\}$ also enumerates $\{0\}$, then
$\{b\}(i)=\{b\}\left(e_{0}\right)$.
Given j, let j^{*} enumerate:
i) $\left\{0,\{b\}\left(e_{0}\right)\right\}$ if $\{b\}(j)=\{b\}\left(e_{0}\right)$, and
ii) $\{0\}$ otherwise.

By the Recursion Theorem, let $\{k\}=\left\{k^{*}\right\}$. So
$\{k\}$ enumerates $\{0\}$ iff $\left\{k^{*}\right\}$ enumerates $\{0\}$

Extensional Realizability

Suppose $b \Vdash$ BD-N.
Let e_{0} be a code for enumerating $\{0\}$. Hence $\{b\}\left(e_{0}\right)>0$.
By extensionality, if $\{i\}$ also enumerates $\{0\}$, then
$\{b\}(i)=\{b\}\left(e_{0}\right)$.
Given j, let j^{*} enumerate:
i) $\left\{0,\{b\}\left(e_{0}\right)\right\}$ if $\{b\}(j)=\{b\}\left(e_{0}\right)$, and
ii) $\{0\}$ otherwise.

By the Recursion Theorem, let $\{k\}=\left\{k^{*}\right\}$. So
$\{k\}$ enumerates $\{0\}$ iff
$\left\{k^{*}\right\}$ enumerates $\{0\}$ iff
$\{b\}(k) \neq\{b\}\left(e_{0}\right)$

Extensional Realizability

Suppose $b \Vdash$ BD-N.
Let e_{0} be a code for enumerating $\{0\}$. Hence $\{b\}\left(e_{0}\right)>0$.
By extensionality, if $\{i\}$ also enumerates $\{0\}$, then
$\{b\}(i)=\{b\}\left(e_{0}\right)$.
Given j, let j^{*} enumerate:
i) $\left\{0,\{b\}\left(e_{0}\right)\right\}$ if $\{b\}(j)=\{b\}\left(e_{0}\right)$, and
ii) $\{0\}$ otherwise.

By the Recursion Theorem, let $\{k\}=\left\{k^{*}\right\}$. So
$\{k\}$ enumerates $\{0\}$ iff
$\left\{k^{*}\right\}$ enumerates $\{0\}$ iff
$\{b\}(k) \neq\{b\}\left(e_{0}\right)$ iff
$\{k\}$ does not enumerate $\{0\}$.

Extensional Realizability

Suppose $b \Vdash$ BD-N.
Let e_{0} be a code for enumerating $\{0\}$. Hence $\{b\}\left(e_{0}\right)>0$.
By extensionality, if $\{i\}$ also enumerates $\{0\}$, then
$\{b\}(i)=\{b\}\left(e_{0}\right)$.
Given j, let j^{*} enumerate:
i) $\left\{0,\{b\}\left(e_{0}\right)\right\}$ if $\{b\}(j)=\{b\}\left(e_{0}\right)$, and
ii) $\{0\}$ otherwise.

By the Recursion Theorem, let $\{k\}=\left\{k^{*}\right\}$. So
$\{k\}$ enumerates $\{0\}$ iff
$\left\{k^{*}\right\}$ enumerates $\{0\}$ iff
$\{b\}(k) \neq\{b\}\left(e_{0}\right)$ iff
$\{k\}$ does not enumerate $\{0\}$.
Conclusion: There is no realizer of BD-N.

fp-realizability

Kleene realizability: $e \Vdash \phi \rightarrow \psi$ iff $\forall x(x \Vdash \phi \rightarrow\{e\}(x) \Vdash \psi)$.

fp-realizability

Kleene realizability: $e \Vdash \phi \rightarrow \psi$ iff $\forall x(x \Vdash \phi \rightarrow\{e\}(x) \Vdash \psi)$.
Kleene's modified realizability:
$e \Vdash \phi \rightarrow \psi$ iff $\forall x(x \Vdash \phi \wedge \operatorname{Pr}(\phi) \rightarrow\{e\}(x) \Vdash \psi)$.

fp-realizability

Kleene realizability: $e \Vdash \phi \rightarrow \psi$ iff $\forall x(x \Vdash \phi \rightarrow\{e\}(x) \Vdash \psi)$.
Kleene's modified realizability:
$e \Vdash \phi \rightarrow \psi$ iff $\forall x(x \Vdash \phi \wedge \operatorname{Pr}(\phi) \rightarrow\{e\}(x) \Vdash \psi)$.
Beeson's formal-provable realizability:

fp-realizability

Kleene realizability: $e \Vdash \phi \rightarrow \psi$ iff $\forall x(x \Vdash \phi \rightarrow\{e\}(x) \Vdash \psi)$.
Kleene's modified realizability:
$e \Vdash \phi \rightarrow \psi$ iff $\forall x(x \Vdash \phi \wedge \operatorname{Pr}(\phi) \rightarrow\{e\}(x) \Vdash \psi)$.
Beeson's formal-provable realizability:
$e \Vdash \phi \rightarrow \psi$ iff $\forall x(\operatorname{Pr}(x \Vdash \phi) \rightarrow\{e\}(x) \Vdash \psi)$.

fp-realizability

Beeson's formal-provable realizability: $e \Vdash \phi \rightarrow \psi$ iff $\forall x(\operatorname{Pr}(x \Vdash \phi) \rightarrow\{e\}(x) \Vdash \psi)$.

fp-realizability

Beeson's formal-provable realizability: $e \Vdash \phi \rightarrow \psi$ iff $\forall x(\operatorname{Pr}(x \Vdash \phi) \rightarrow\{e\}(x) \Vdash \psi)$.
Let $\{e\}(n)=\max \{k<n \mid \forall j, w, z<k$ if j codes a proof that w is total then $\{w\}(z) \downarrow<n\}$.
Clearly, the range of $\{e\}$ is countable and unbounded.

fp-realizability

Beeson's formal-provable realizability: $e \Vdash \phi \rightarrow \psi$ iff $\forall x(\operatorname{Pr}(x \Vdash \phi) \rightarrow\{e\}(x) \Vdash \psi)$.
Let $\{e\}(n)=\max \{k<n \mid \forall j, w, z<k$ if j codes a proof that w is total then $\{w\}(z) \downarrow<n\}$.
Clearly, the range of $\{e\}$ is countable and unbounded.
Claim: The range of $\{e\}$ is pseudo-bounded.

fp-realizability

Beeson's formal-provable realizability: $e \Vdash \phi \rightarrow \psi$ iff $\forall x(\operatorname{Pr}(x \Vdash \phi) \rightarrow\{e\}(x) \Vdash \psi)$.
Let $\{e\}(n)=\max \{k<n \mid \forall j, w, z<k$ if j codes a proof that w is total then $\{w\}(z) \downarrow<n\}$.
Clearly, the range of $\{e\}$ is countable and unbounded.
Claim: The range of $\{e\}$ is pseudo-bounded.
Sketch of proof: We need to realize "if f enumerates a subset of $r n g\{e\}$ then there is a bound beyond which $f(n) \leq n$."

fp-realizability

Beeson's formal-provable realizability: $e \Vdash \phi \rightarrow \psi$ iff $\forall x(\operatorname{Pr}(x \Vdash \phi) \rightarrow\{e\}(x) \Vdash \psi)$.
Let $\{e\}(n)=\max \{k<n \mid \forall j, w, z<k$ if j codes a proof that w is total then $\{w\}(z) \downarrow<n\}$.
Clearly, the range of $\{e\}$ is countable and unbounded.
Claim: The range of $\{e\}$ is pseudo-bounded.
Sketch of proof: We need to realize "if f enumerates a subset of $r n g\{e\}$ then there is a bound beyond which $f(n) \leq n$." Suppose x provably realizes the antecedent. Let $N>x$ code such a proof.

fp-realizability

Beeson's formal-provable realizability:

$$
e \Vdash \phi \rightarrow \psi \text { iff } \forall x(\operatorname{Pr}(x \Vdash \phi) \rightarrow\{e\}(x) \Vdash \psi)
$$

Let $\{e\}(n)=\max \{k<n \mid \forall j, w, z<k$ if j codes a proof
that w is total then $\{w\}(z) \downarrow<n\}$.
Clearly, the range of $\{e\}$ is countable and unbounded.
Claim: The range of $\{e\}$ is pseudo-bounded.
Sketch of proof: We need to realize "if f enumerates a subset of $r n g\{e\}$ then there is a bound beyond which $f(n) \leq n$." Suppose x provably realizes the antecedent. Let $N>x$ code such a proof.
Then for $n>N$

$$
\begin{aligned}
f(n)= & \{e\}\left(\{x\}(n)_{i}\right) \\
= & \max \left\{k<\{x\}(n)_{i} \mid \forall j, w, z<k \text { if } j\right. \text { codes a proof } \\
& \text { that } \left.w \text { is total then }\{w\}(z) \downarrow<\{x\}(n)_{i}\right\} .
\end{aligned}
$$

fp-realizability

$\{e\}(n)=\max \{k<n \mid \forall j, w, z<k$ if j codes a proof that w is total then $\{w\}(z) \downarrow<n$ steps $\}$.
Claim: The range of $\{e\}$ is pseudo-bounded.
Sketch: Let N be a proof that $x \Vdash$ " f enumerates a subset of $r n g\{e\}$. ."
For $n>N$

$$
\begin{aligned}
f(n) & =\{e\}\left(\{x\}(n)_{i}\right) \\
= & \max \left\{k<\{x\}(n)_{i} \mid \forall j, w, z<k \text { if } j\right. \text { codes a proof } \\
& \text { that } \left.w \text { is total then }\{w\}(z) \downarrow<\{x\}(n)_{i}\right\} .
\end{aligned}
$$

Consider any $k>n$. Let j, w, z be N, x, n, respectively.

fp-realizability

$\{e\}(n)=\max \{k<n \mid \forall j, w, z<k$ if j codes a proof that w is total then $\{w\}(z) \downarrow<n$ steps $\}$.
Claim: The range of $\{e\}$ is pseudo-bounded.
Sketch: Let N be a proof that $x \Vdash$ " f enumerates a subset of $r n g\{e\}$."
For $n>N$

$$
\begin{aligned}
f(n)= & \{e\}\left(\{x\}(n)_{i}\right) \\
= & \max \left\{k<\{x\}(n)_{i} \mid \forall j, w, z<k \text { if } j\right. \text { codes a proof } \\
& \text { that } \left.w \text { is total then }\{w\}(z) \downarrow<\{x\}(n)_{i}\right\} .
\end{aligned}
$$

Consider any $k>n$. Let j, w, z be N, x, n, respectively. We need to consider whether $\{x\}(n) \downarrow<\{x\}(n)_{i}$.

fp-realizability

$\{e\}(n)=\max \{k<n \mid \forall j, w, z<k$ if j codes a proof that w is total then $\{w\}(z) \downarrow<n$ steps $\}$.
Claim: The range of $\{e\}$ is pseudo-bounded.
Sketch: Let N be a proof that $x \Vdash$ " f enumerates a subset of $r n g\{e\}$."
For $n>N$

$$
\begin{aligned}
f(n) & =\{e\}\left(\{x\}(n)_{i}\right) \\
& =\max \left\{k<\{x\}(n)_{i} \mid \forall j, w, z<k \text { if } j\right. \text { codes a proof } \\
& \text { that } \left.w \text { is total then }\{w\}(z) \downarrow<\{x\}(n)_{i}\right\} .
\end{aligned}
$$

Consider any $k>n$. Let j, w, z be N, x, n, respectively. We need to consider whether $\{x\}(n) \downarrow<\{x\}(n)_{i}$. Since $\{x\}(n)>\{x\}(n)_{i},\{x\}(n) \downarrow>\{x\}(n)_{i}$. So $f(n)$ is the max of a set which includes nothing greater than n, hence $f(n) \leq n$.

Questions

Is there an example of A pseudo-bounded and yet unbounded?
Does the topological model over the unbounded sets of naturals suggested earlier work?
Is the topological model the right, or best, or simplest, or natural, or generic model of $\neg \mathrm{BD}-\mathbb{N}$? What would that mean?
What other properties implied by BD-N could be shown not to imply BD-N by holding in the model given here?

References

- on BD-N: Hajime Ishihara, "Continuity properties in constructive mathematics," Journal of Symbolic Logic, v. 57 (1992), p. 557-565
- on the topological model: Robert Lubarsky, "The failure of BD-N , and an application to the anti-Specker property," unpublished
- on anti-Specker: Josef Berger and Douglas Bridges, "The anti-Specker property, a HeineBorel property, and uniform continuity," Archive for Mathematical Logic, v. 46 (2008), p. 583-592 Douglas Bridges, "Inheriting the anti-Specker property", preprint, University of Canterbury, NewZealand, 2009, submitted for publication
- on fp-realizability: Michael Beeson, "The nonderivability in intuitionistic formal systems of theorems on the continuity of effective operations," Journal of Symbolic Logic, v. 40 (1975), p. 321-346
Douglas Bridges, Hajime Ishihara, Peter Schuster, and Luminita Vita, "Strong continuity implies uniformly sequential continuity," Archive for Mathematical Logic, v. 44 (2005), p. 887-895
- on extensional and other realizabilities: Peter Lietz, "From constructive mathematics to computable analysis via the realizability interpretation," Ph.D. thesis, Technische Universität Darmstadt, 2004, http://www.mathematik.tu-darmstadt.de/ streicher/THESES/lietz.pdf.gz

