We say that a group G has a finite covering if G is a set theoretical union of finitely many proper subgroups. According to B. Neumann this is true iff the group has a finite non-cyclic homomorphic image. Thus, it suffices to restrict our attention to finite groups. The minimal number of subgroups needed for such a covering is called the covering number of G denoted by $\sigma(G)$.

Let S_{n} be the symmetric group on n letters. For odd n Maroti determined $\sigma\left(S_{\mathrm{n}}\right)=2^{\mathrm{n}-1}$ except for $n=9$ and gave estimates for n even showing that $\sigma\left(S_{\mathrm{n}}\right) \leq 2^{\mathrm{n}-2}$. Using GAP calculations, as well as incidence matrices and linear programming, we show that $\sigma\left(S_{8}\right)=$ $64, \sigma\left(S_{10}\right)=221, \sigma\left(S_{12}\right)=761$. We also show that Maroti 's result for odd n holds without exception proving that $\sigma\left(S_{9}\right)=256$

We establish in addition that the Mathieu group m_{12} has covering number 208, and improve the estimate for the Janko group J_{1} given by P.E. Holmes. (L-C K., D.N., E.S.)

We also determine $\sigma(A 9)=157, \sigma(A 11)=2751$ (S.M., D.N., M.E.)

