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Abstract

Homology has long been accepted as an important computational tool for quantifying complex structures.
In many applications these structures arise as nodal domains of real-valued functions and are therefore
amenable only to a numerical study based on suitable discretizations. Such an approach immediately raises
the question of how accurately the resulting homology can be computed. In this paper we present an
algorithm for correctly computing the homology of one- and two-dimensional nodal domains. The approach
relies on constructing an appropriate cubical approximation for the nodal domain based on the behavior of the
defining function at the vertices of a fixed grid. Betti numbers for these cubical sets are readily computable
using [25, 26]. Here, we present a technique to verify that the cubical representation is homeomorphic to the
nodal domain, and therefore preserves homology. To illustrate this approach we consider examples from three
classes of nodal domains, including the time-dependent patterns generated by the Cahn-Hilliard model for
spinodal decomposition. We use these results to examine the probability of correct homology computations
given specific grid sizes as related to the analytic estimates presented in [14, 34, 35, 40].

1 Introduction

1.1 Topology of complicated evolving patterns

The formation of complex patterns is ubiquitous throughout the applied sciences. In many cases
these patterns exhibit a clear geometric structure, such as periodicity or certain symmetries. Ex-
perience, however, tells us that this is not always the case. Most patterns observed in biological
systems are considerably more complicated, and standard symmetry or periodicity arguments can-
not easily be applied in their study. Also in the context of materials science one can observe
irregular time-varying patterns such as, for example, complex microstructures generated in binary
metal alloys through a process called spinodal decomposition [9, 10, 30, 31, 45].

Due to the irregularity of these patterns, we choose to make a quantitative study based on
topological properties in order to focus on coarse characteristics. In previous work we have shown
that the use of homology groups and the resulting Betti numbers can provide valuable informa-
tion about the patterns. While a precise definition of homology groups is not necessary for the
current paper, we briefly recall the notion of Betti numbers of a topological space, which measure
connectivity in different dimensions. More precisely, the zero-dimensional Betti number β0 counts
the number of components of a set, and the one-dimensional Betti number β1 counts the number
of loops that cannot be shrunk to a point within the set and cannot be transformed into one an-
other. In a three-dimensional complex, the two-dimensional Betti number β2 counts the number of
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enclosed cavities. Thus, the Betti numbers provide quantitative information on basic topological
information. For more a more detailed discussion, see [20, 21, 25, 37]. As an example, we refer
the reader to the left image in Figure 2 below. In this image, the dark regions form a set which as
zero-dimensional Betti number β0 = 11 and one-dimensional Betti number β1 = 3. If instead one
considers the light colored region, one has β0 = 12 and β1 = 2.

From a mathematical point of view, the first step towards studying the phenomenon of pattern
formation in physical systems centers around deriving accurate mathematical models that can be
used to predict system behavior, either analytically or through numerical simulation. In the context
of phase separation in materials, one of the central approaches is the derivation of so-called phase-
field models [12], which describe the evolution of a phase variable u(t, x) as a function of time t and
a spatial variable x through (in many cases) parabolic partial differential equations. The resulting
function u is a continuous real-valued function which describes the composition of the underlying
material through its function values. For example, Cahn and Hilliard [9, 10] proposed a fourth-
order parabolic partial differential equation to model the phenomenon of spinodal decomposition.
In this model, a phase variable u records the composition of the alloy as follows: values of u(t, x)
close to +1 indicate that at time t and position x the material consists almost exclusively of the
first material, values close to −1 correspond to the second material, and values in between represent
mixtures of the two materials. With this convention, values of u close to zero correspond to an equal
mixture of the two underlying materials. Since we are interested in the microstructures created
through the phase separation process, we study the sets where u is of one sign, i.e., we want to
describe the so-called nodal domains

N+(t) = {x : u(t, x) ≥ 0} and N−(t) = {x : u(t, x) ≤ 0} .

For the classical Cahn-Hilliard model in two dimensions, these nodal domains typically have the
form shown in the left image of Figure 1, where the dark region corresponds to N+(t) and the light
region to N−(t). Similar microstructures can be observed in three space dimensions (see the right
image of Figure 1).

In [21] it is demonstrated that by studying the evolution of the Betti numbers of the nodal
domains N±(t) one can uncover quantitative microstructure differences between the classical Cahn-
Hilliard model and its stochastic extension, the Cahn-Hilliard-Cook model [13, 29]. Both models
are given by

∂u

∂t
= −∆

(
ε2∆u− F ′(u)

)
+ σ · ξ for x ∈ Γ and t ≥ 0 , (1)

subject to no-flux boundary conditions for both u and ∆u. The domain Γ is bounded, and the
nonlinearity F is a double-well potential, usually defined as F (u) = (u2 − 1)2/4. Moreover, ε > 0
is a small parameter which models the interaction length, and ξ denotes a white noise process
(for more details see for example [7]). The parameter σ ≥ 0 is a measure for the intensity of the
random fluctuations. For σ = 0 we obtain the deterministic Cahn-Hilliard model, whereas σ > 0
corresponds to the stochastic Cahn-Hilliard-Cook model.

In order to quantitatively describe the evolution of the pattern complexity in (1), the study
in [21] considers ensembles of initial conditions which are random small-amplitude perturbations
of a homogeneous initial state, generally u(0, x) ≡ 0, which corresponds to an equal mixture of the
two alloy components. The evolution equation is then solved numerically for each initial condition
up to some fixed time, and the dimensions of the homology groups of the nodal domains N±(t)
of u are computed. This procedure furnishes averaged Betti number evolution curves, which can be
viewed as characteristic descriptors of the complexity evolution of the microstructures. By varying
the noise intensity σ and the size of the domain Γ, one can then study their effect on the resulting
patterns. The main results of [21] can be summarized as follows.
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Figure 1: Complicated microstructures generated from simulations of the Cahn-Hilliard model.

• The deterministic Cahn-Hilliard model exhibits a surprising non-monotone behavior of the
complexity evolution curves. This effect weakens with increasing noise intensity σ. If the
noise intensity exceeds a certain threshold, the complexity evolution exhibits monotone decay,
as would be expected from the experimental data in [24]. It is possible to heuristically explain
the non-monotone behavior using the results of [43, 45].

• By combining the homology information of the complementary sets N±(t), one can distinguish
between boundary effects and bulk behavior in the material. It turns out that the average
number of components touching the boundary of Γ is given by the average of the Euler
characteristic of the pattern, where the average is taken over the ensemble of initial conditions.
The Euler characteristic is a weaker topological invariant than the set of Betti numbers and can
be calculated as the alternating sum of the Betti numbers, which in two or three dimensions is
given by β0−β1 +β2, see [37]. Bulk effects can only be described by the complete set of Betti
numbers. Moreover, scaling the underlying domain has different effects on the topological
quantities. While the averaged Euler characteristic scales with the length of the boundary,
the averaged Betti numbers scale with the area.

These results demonstrate that the topological information contained in the Betti numbers of the
microstructures can be used to distinguish different models, or to compare model behavior to
experiments. Moreover, the provided connectivity information exceeds by far what can be obtained
from studies using the Euler characteristic, which had been used extensively in the past [5, 11, 24,
32, 33].

The above discussion describes one particular instance in which the study of topological prop-
erties of nodal domains is important, but there are many others. For example, in the context of
simulating problems involving moving fronts, level set methods have been used to describe the
evolution of a front via the evolution of an underlying auxiliary function, which describes the front
implicitly as a level set [41, 44]. One of the main reasons for the introduction of this concept was
that it can easily deal which topological changes in the level set. In a probabilistic context, the
topology of sub- or super-level sets can be used to determine the asymptotic behavior of excursion
probabilities of random fields, see for example [1, 2]. Furthermore, homological techniques have
been used successfully for quantitative studies involving spatio-temporal chaos [20], complicated
flow patterns in Rayleigh-Benard convection [28], nonlocal and stochastic extensions of the classi-
cal phase-field model for non-isothermal phase separation [22, 23], and even in the study of residual
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stress networks in polycrystals [18].

1.2 Validation of homology computations

In this paper, we address the topological study of nodal domains from a rigorous computational
perspective. For this, let f : Γ → R be a smooth function, with Γ a compact, rectangular domain
in R or R2. By rescaling f , the domain can be taken to be the unit interval or square, that is,
we have Γ = [0, 1] ⊂ R or Γ = [0, 1] × [0, 1] ⊂ R2. We are interested in the topology of the nodal
domains

N+ = {x ∈ Γ : f(x) ≥ 0} and N− = {x ∈ Γ : f(x) ≤ 0} ,

in particular, in computing the homology groups H∗(N±) of N±.
To the best of our knowledge one of the first results concerning the accuracy of estimation

of this topological information is due to Niyogi, Smale, and Weinberger [40]. Similar methods
had been introduced earlier for the reconstruction of surfaces in [3, 4], and by combining these
results with the ones of [15] it is possible to recover the main conclusions of [40]. In the paper by
Niyogi et al., the authors propose a stochastic algorithm for computing the homology of a given
manifold X ⊂ Rd by randomly sampling M points from the manifold, and explicit bounds are
derived on the probability that their algorithm computes the correct homology. The probability
bound depends on the number M and a condition number 1/τ . The latter parameter encodes
both local curvature information of the manifold X, as well as global separation properties. More
precisely, the inverse condition number τ is the largest number such that the open normal bundle
about X ⊂ Rd of radius r is embedded in Rd for all r < τ .

For nodal domains, it seems difficult to estimate τ based on computable properties of f . How-
ever, in this context there is a simpler method of sampling. Cover Γ with a uniform cubical grid,
and then the numerical computation of the values of f on the vertices of the grid can be used to
determine a set of points in N+. This determination of roughly evenly spaced points in N+ replaces
the notion of random sampling in the Niyogi, Smale, and Weinberger approach. The computed
collection of points is then used to construct a cubical approximation N+

M of N+ such as in Figure 2,
and cubical homology software packages such as [26, 25] may then be applied to compute the Betti
numbers of the cubical approximation. As can be seen in Figure 2, the homology of this cubical
approximation need not be the same as that of N+.

Given certain assumptions on the properties of the nodal domain (related to the assumptions
in Niyogi, Smale, and Weinberger’s approach), and a sufficiently fine grid, we expect this approach
to yield the correct homology of the nodal domain. In a probabilistic sense this has been justified
in [34], where rigorous lower bounds are derived for the probability of correctly computing the
homology of nodal domains of random fields given a fixed uniform grid size. Since we will be
addressing the sharpness of these bounds later in this paper, we briefly recall one of the main
results in [34]. Consider a random Fourier series in two space dimensions of the form

f(x, ω) =
∞∑

k,!=0

ak,! · (gk,!,1(ω) cos(2πkx1) cos(2π)x2) + gk,!,2(ω) cos(2πkx1) sin(2π)x2)

+gk,!,3(ω) sin(2πkx1) cos(2π)x2) + gk,!,4(ω) sin(2πkx1) sin(2π)x2)) , (2)

which defines a periodic random function on the square domain Γ = [0, 1]2. In the definition of f ,
the functions gk,!,m denote Gaussian random variables over a common probability space (Ω,F , P)
which are independent and normally distributed with mean 0 and variance 1, and the ak,! are real
constants. In addition, assume that there are positive k1, )1 ∈ N and nonnegative k2, )2 ∈ N0 which
satisfy k1 )= k2 and )1 )= )2, as well as k2

1 +)2
1 )= k2

2 +)2
2, such that both ak1,!1 and ak2,!2 are nonzero.
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Figure 2: Nodal domains of a random trigonometric polynomial in two space dimensions and their
cubical approximations with M = 50. Note that the topology of the cubical representation can
possibly be different from the topology of the nodal domain. One quantitative measurement that
implies a different topology is the set of Betti numbers, which for the dark region are β0 = 11,
β1 = 3 for the nodal domain and β0 = 9, β1 = 4 for the cubical domain.

Finally, suppose that
∞∑

k,!=0

(
k6 + )6

)
a2

k,! < ∞ .

These assumptions guarantee that the random function f includes sufficient randomness and that
the sample realizations are almost surely at least twice continuously differentiable.

Now consider the random nodal domains

N+(ω) = {x ∈ Γ : f(x, ω) ≥ 0} and N−(ω) = {x ∈ Γ : f(x, ω) ≤ 0} ,

as well as cubical approximations N±
M (ω) constructed from the evaluation of f(·, ω) at the (M +1)2

discretization points xk,! = (k/M, )/M) for k, ) = 0, . . . ,M . Then [34, Theorem 3.10] gives a lower
bound on the probability that the nodal domains N±(ω) have the same homology as their cubical
approximations N±

M (ω). More precisely, it is shown that

P
{
H∗(N±) ∼= H∗(N±

M )
}
≥ 1− 1067π2

18M2
· (A2,0 + A1,1 + A0,2)2

A1/2
0,0 A1/2

0,1 A1/2
1,0 A1/2

1,1

+ O

(
1

M3

)
, (3)

where Ap,q is defined by

Ap,q =
∞∑

k,!=0

k2p)2qa2
k,! . (4)

Notice that these values are related to averaged L2(Γ)-norms of the random function f and its
derivatives, since we have

E
∥∥Dp

x1
Dq

x2
f
∥∥2

L2(Γ)
= (2π)2p+2q · Ap,q ,

where E denotes the expected value of a random variable over (Ω,F , P).
The above result provides fundamental insight into the relationship between the discretization

size and averaged “curvature” information of the random function f . More specifically, specifying
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Figure 3: Nodal domains of a bivariate random trigonometric polynomial of degree K = 10 and
boxes on which the topology of N+ can be determined from the corner function values.

a confidence probability for the correctness of the homology computation determines a sufficient
discretization size a-priori. However, this result does leave a number of questions unanswered. First,
it does not address the tightness of the lower bound. More importantly, the theory presented in [34]
relies on the use of Gaussian fields which is not appropriate in a number of interesting applications,
most notably for patterns created by nonlinear stochastic partial differential equations.

1.3 Structure of the paper and main results

Partially motivated by the questions just described, in the present paper, we develop a verified
numerical approach to computing the homology of N±. In particular, by including bounds on
first and second derivatives of f and interval arithmetic to account for round-off error in the
numerical computations, we may check that the structure of the nodal domain has been computed
accurately within each grid element. For efficiency, we construct an adaptive grid which is finer
where greater resolution is required to accurately represent and verify N±, as shown in Figure 3.
Our verified numerical approach is described in detail in Sections 2 and 3. After introducing
necessary mathematical tools and results on interval arithmetic, the complete adaptive algorithm
is described in the remainder of Section 2. Its validity is then established in Section 3.

In Section 4, we use the verified homology procedure on three specific families of nodal do-
mains: double-well potentials, where we study connections to the condition number in [40], random
trigonometric polynomials, where we explore the sharpness of the estimates in [34], and solutions to
the Cahn-Hilliard equation. The latter case is of particular importance due to the above-mentioned
restrictions of the results in [34]. First, we study the effect of the inherently non-Gaussian distri-
bution of the random fields produced by the Cahn-Hilliard-Cook evolution. In addition, we note
that for functions where the boundary of the nodal domain is not smooth, the homology need
not be correctly computed for any grid size. When considering the time evolution of the patterns
generated by the Cahn-Hilliard-Cook model, one therefore has to expect that near times where the
topology of the pattern is changing, the homology is not computed correctly for computationally
tractable grid sizes. For this reason, we also investigate the amount of time in which the homology
is computed correctly in the time series of Betti numbers. The main findings of our studies in
Section 4 can be summarized as follows.

• For simple geometric features generated through sublevel sets of a double-well potential, the
main performance parameters of our verified numerical algorithm scale logarithmically in the
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feature size or feature curvature. This is in stark contrast to the polynomial scaling observed
in the probabilistic algorithm of [40].

• For two-dimensional doubly-periodic random polynomials we show that the theoretical es-
timates of [34] on the discretization size which is necessary to determine the nodal domain
homology with high probability are sharp in general. Moreover, we demonstrate that while
these theoretical estimates cannot readily take advantage of any significant spatial correla-
tions, our adaptive algorithm does. In other words, the complexity of our algorithm is related
to the actual topological complexity of the nodal domains, and not on worst-case behavior.

• In the context of temporally evolving complicated patterns which are observed during phase
separation we draw two important conclusions. For the case of one-dimensional base domains,
we show that the theoretical predictions for the discretization size given in [34] are sharp as
long as the random field describing the solution snapshot is close to Gaussian, i.e., during the
linear initial phase separation regime. As soon as nonlinearity effects set in, the probabilistic
estimates are overestimations. In addition, we show that as a function of time our adaptive
algorithm validates the nodal domains almost always. In fact, even though one would ex-
pect algorithm failure whenever the topology of the nodal domains changes, for realistic time
discretizations it does not fail, even in the two-dimensional case.

2 An algorithm for verified homology computations

In this section, we present an algorithm to construct a cubical domain which has the same homology
as the nodal domain N+. Indeed, as shown in Section 3, the resulting cubical complex is homeo-
morphic to N+. The idea behind this construction is to combine an adaptive, binary subdivision
approach for constructing a cubical decomposition of the domain with a verification step to check
the behavior of the function on each cube. The procedure is described for a two-dimensional nodal
domain, and a similar approach works in the simpler one-dimensional setting.

Before describing our procedure, we must address some computational issues. We use the
symbols {⊕,-,⊗,/} to denote the standard interval arithmetic operations as defined in [27, 36,
38, 39]. If one of the operands is a real number a, then it should be considered as a degenerate
interval [a] := [a, a]. If F is a continuous real-valued function and B is a compact, connected subset
of its domain, then F (B) is an interval. Numerically, interval arithmetic operations and interval
function evaluation are performed using outward rounding so that the interval computed using
floating-point numbers is guaranteed to contain the true interval result. In this case, we emphasize
that an interval I is a computationally rounded interval by the notation Ĩ. There are a number
of software libraries that perform these calculations, and we use CAPD [19] for the computations
shown in Section 4.

Now, the first step in the algorithm to compute a cubical approximation to a nodal domain
is to subdivide Γ = [0, 1] × [0, 1] into a uniform grid. The amount of this initial subdivision can
be chosen arbitrarily, including no initial subdivision. We compute the sign of f on each of the
vertices of the grid. It is again important to note that all numerical computations are performed
using interval arithmetic to account for round-off errors. For each vertex v we compute a small
interval f̃(v) containing f(v). If f̃(v) does not contain zero, then we have verified the sign of f(v).
For a random function in the classes of functions we typically consider, the probability that f has
a zero at a vertex is zero. However, it is possible, due to round-off error or the wrapping effect,
that 0 ∈ f̃(v), and hence the sign of f(v) cannot be verified. For simplicity, we declare that the
algorithm fails if we cannot verify the sign at a vertex.

For each box B in the grid, we now define a verification step whereby we determine the topo-
logical structure of N+ ∩ B. The verification step will depend on the sign configuration on the
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Figure 4: Possible sign structures (up to rotation and negation) on the vertices of a grid element.

vertices of B, which falls into one of the four configurations (up to orientation and negation) shown
in Figure 4. If the verification step on B fails, we subdivide B in each coordinate direction and
perform the verification step on each of the smaller boxes contained in B. This procedure continues
until all boxes in the grid have passed the verification step, or until the grid is refined beyond a
preset resolution.

The verification step involves checking computable conditions that guarantee that the topology
of the nodal domain in B is captured by the sign structure on the vertices of B (see Figure 5).
In particular, we attempt to establish that f is either bounded away from zero on B in case (a)
in Figure 4 or is monotonic along appropriate rays through B in cases (b) and (c) in Figure 4.
The required bounds on f(B), fx(B), and fy(B) are directly computable using interval arithmetic.
However, because the outward rounding employed in this approach may produce very large bounds,
we employ a form of the Mean Value Theorem to obtain tighter bounds. The motivating idea behind
this approach is given in the following proposition.

Proposition 2.1 Suppose that the function g : [a, b] → R is continuous on the closed interval
[a, b] ⊂ R and is continuously differentiable on (a, b). Then

g([a, b]) ⊂ g

(
a + b

2

)
⊕ b− a

2
⊗ g′([a, b])⊗ [−1, 1] (5)

Proof. By the Mean Value Theorem, for x ∈ [a, b], there exists c ∈ [a, b] such that

g(x) = g

(
a + b

2

)
+ g′(c)

(
x− a + b

2

)

∈ g

(
a + b

2

)
⊕ b− a

2
⊗ g′([a, b])⊗ [−1, 1] for all x ∈ [a, b].

Corollary 2.2 Let B = [a1, b1]× [a2, b2] and f : B → R be a C1 function. If

0 /∈ f

(
a1 + b1

2
,
a2 + b2

2

)
⊕ b1 − a1

2
⊗ fx(B)⊗ [−1, 1]⊕ b2 − a2

2
⊗ fy(B)⊗ [−1, 1], (6)

then f is bounded away from 0 on B.

Proof. For x ∈ B let γ : [−1, 1] → R2 be a linear parametrization of the intersection of B with the
line through the points x and (1

2(a1 + b1), 1
2(a2 + b2)) with γ(0) = (1

2(a1 + b1), 1
2(a2 + b2)). We now
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apply Lemma 2.1 to the function g : [−1, 1] → R defined by g = f ◦ γ to obtain

f(x) = g(γ−1(x))
∈ g(0) + g′([−1, 1])⊗ [−1, 1]

⊂ f

(
a1 + b1

2
,
a2 + b2

2

)
⊕ (fx(B), fy(B))2

(
γ([−1, 1])-

(
a1 + b1

2
,
a2 + b2

2

))

⊂ f

(
a1 + b1

2
,
a2 + b2

2

)
⊕ b1 − a1

2
⊗ fx(B)⊗ [−1, 1]⊕ b2 − a2

2
⊗ fy(B)⊗ [−1, 1].

Note that 2 denotes the dot product using interval arithmetic.

In practice, the bound computed from the right-hand side of (6) is often much smaller than
the bound given by evaluating f(B) directly using interval arithmetic. A similar approach may be
adopted for studying monotonicity along rays in B. We again apply Proposition 2.1 to obtain the
necessary bounds.

Definition 2.3 Let B = [a1, b1] × [a2, b2]. We will say that f : B → R is monotone in the
x-direction on B if 0 /∈ fx([a1, b1], y) for each y ∈ [a2, b2]. Similarly, f is monotone in the
y-direction on B if 0 /∈ fy(x, [a2, b2]) for each x ∈ [a1, b1].

Corollary 2.4 Let B = [a1, b1]× [a2, b2] and f : B → R be a C2 function. If

0 /∈ fx

(
a1 + b1

2
, [a2, b2]

)
⊕ b1 − a1

2
⊗ fxx(B)⊗ [−1, 1] (7)

then f is monotone in the x-direction on B. Similarly, if

0 /∈ fy

(
[a1, b1],

a2 + b2

2

)
⊕ b2 − a2

2
⊗ fyy(B)⊗ [−1, 1] (8)

then f is monotone in the y-direction on B.

Proof. For (x∗, y∗) ∈ B, let g = fx(·, y∗) : [a1, b1] → R. Then by Proposition 2.1,

fx(x∗, y∗) = g(x∗)

∈ g

(
a1 + b1

2

)
⊕ b1 − a1

2
⊗ g′([a1, b1])⊗ [−1, 1]

⊂ fx

(
a1 + b1

2
, y∗

)
⊕ b1 − a1

2
⊗ fxx([a1, b1], y∗)⊗ [−1, 1]

⊂ fx

(
a1 + b1

2
, [a2, b2]

)
⊕ b1 − a1

2
⊗ fxx(B)⊗ [−1, 1].

Therefore, if (7) holds, then fx(z) )= 0 for all z ∈ B and f is monotone in the x-direction on B.
The second part of the corollary follows by a similar argument.

While it is also possible to study monotonicity along rays in directions other than the coordinate
directions, we find the tests listed in Corollary 2.4 to be both efficient for coding purposes and suffi-
cient for our studies. On one further technical point, we found that in computing bounds on f(B),
the process of subdividing B into D2

box uniform boxes B1, . . . , BD2
box

, where Dbox denotes a suitable

integer, then performing interval arithmetic to obtain bounds on each f̃(Bi), i = 1, . . . , D2
box, and

finally setting f̃(B) to be the smallest bounding interval of ∪D2
box

i=1 f̃(Bi), can produce considerably

9



!

!

!

!

− +

+ +

(b)

!

!

!

!

+ +

− −

(c)

Figure 5: Possible structure of ∂(N+) ∩B in B up to rotation and negation.

tighter bounds. Due to the additional computational effort, the integer Dbox has to be chosen ap-
propriately. Through initial experiments, we found that choosing Dbox = 4 significantly increases
the tightness of the bounds without adding too much additional computational expense. Never-
theless, for more complicated patterns, such as for example random trigonometric polynomials of
higher degree, the value of Dbox has to be increased. For the simulations in this paper we use values
of Dbox between 4 and 12.

We now describe how to apply the tools offered by Corollaries 2.2 and 2.4 to the study of the
sign configurations shown in Figure 4.

Case (a) in Figure 4: In this case, we try to verify the hypothesis of Corollary 2.2 in order to show
that N+ ∩B = B or N+ ∩B = ∅.
Cases (b) and (c) in Figure 4: Since the sign structure on the vertices for each of these cases indicates
that there must be a sign change for f in the interior of B, we now check that this sign change
occurs in the simplest possible way. In other words, we check that ∂(N+) ∩ B looks topologically
like the pictures listed in Figure 5 by verifying the appropriate hypotheses in Corollaries 2.2 and 2.4.
More specifically, for Case (c) with the orientation depicted in Figure 5, we first use Corollary 2.2
with input boxes [a1, b1] × [a2, a2] and [a1, b1] × [b2, b2] to check that f is bounded away from 0
on the top and bottom edges of B and then use Corollary 2.4 to test that f is monotone in the
y-direction on B. In Case (b) we check that f is monotone in both the x and y-directions on B.
Note that we are checking a condition that is stronger than necessary in Case (b). This stronger
condition can be verified in the work we present here and has the added benefit that it simplifies
the coded algorithm.
Case (d) in Figure 4: The sign structure on the vertices in this case indicates that more resolution
is required to approximate N+ ∩B. We consider a box of this sign structure to automatically fail
the verification step, and therefore it is subdivided.

Suppose this subdivision and verification procedure terminates successfully. Then we obtain
a possibly nonuniform cubical decomposition of Γ as in Figure 3. In order to construct a cubical
approximation of N+, we consider the uniform grid with grid size equal to the minimal cube size in
the nonuniform decomposition, 1/M , and augment the region Γ to ΓM = [−1/(2M), 1 + 1/(2M)]
or [−1/(2M), 1 + 1/(2M)]2. Let GM denote the uniform grid of cubes of size 1/M on ΓM . Now we
perform one last verification test to determine the sign of f at the center of each cube in GM . (Note
that these centers are exactly the vertices of cubes in our subdivision and verification procedure.)
If this test is passed, we define the cubical approximation N+ of N+ by the condition that the grid
element B ∈ GM is in N+ if and only if the vertex sign at the center of B is positive. As previously
mentioned, the homology of the cubical set N+ may now be computed using [26]. We prove in the
next section that if this procedure is successful, then in fact one has H∗(N+) ≈ H∗(N+).

The above-described procedure works well in many applications. However, particularly for time-
evolving patterns, it is possible that due to grid alignment issues of the nodal lines the minimal
cube size 1/M in the nonuniform decomposition can become extremely small, which in turn leads
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to large cubical approximations N+ and long computational times for their homology. We have
therefore extended the above algorithm by a procedure which allows for the verification step to
be performed recursively. More precisely, the recursive implementation of our algorithm uses the
following modified verification step for a given box B:

• For each of the four edges of the box B, verify the sign behavior on this edge via interval
arithmetic. In other words, if adjacent corners have the same sign, the function has to be
of one sign throughout the adjoining edge, if the corners have opposite signs, the respective
partial derivative of f has to be nonzero on the edge. For finding enclosures of function values
on the edges, we subdivide the edge into Dedge subintervals, similarly to the earlier discussion
of Dbox. For the computations in this paper we always use Dedge = 4 · Dbox.

• If the appropriate sign and/or monotonicity conditions can be verified for the box given the
sign configuration on its vertices as described above, then the box also verifies in the recursive
version of the algorithm.

• If the box cannot be verified using the above procedure, subdivide the box into four subboxes
and verify these recursively. If all of them can be verified, then mark the original box as
verified.

By allowing this recursive verification procedure, the minimal cube size 1/M in the nonuniform
decomposition increases significantly, in most cases by several orders of magnitude. Moreover, if a
box B passes the recursive verification step, one can still guarantee that the location of the nodal
line within B can be deduced from the signs of the function values at the corners. However, the
nodal line no longer has to be monotone within B as in the non-recursive algorithm, which may
result in the cubical approximation N+ as described above furnishing the wrong homology. To
see this, note that a snaking nodal line might introduce artificial loops for certain discretization
sizes M .

In order to avoid this problem, we have implemented the construction of a cubical approxima-
tion Ñ+ which is based solely on the sign configurations at the vertices of the recursively verified
cubes and avoids evaluating additional function values inside the cubes. Consider again the col-
lection GM of (M + 1)2 cubes covering ΓM as described previously. Then the cubical set Ñ+ is
constructed as follows. Let B denote a recursively verified cube in the final adaptive grid, say with
side length k/M for some integer k. If the signs at the four vertices of B are all positive, then we
add all (k+1)2 cubes of GM which overlap with B to Ñ+. If on the other hand B contains negative
vertices, then we only add the cubes of GM which overlap with the edges of B with positive vertices.
In other words, if B has only one such edge we add k+1 cubes, and if B has exactly two such edges
we add 2k + 1 cubes. If all of the vertices of B have negative signs, no cubes from GM are added
to Ñ+. Notice that if some cube in GM overlaps with two adjacent recursively verified cubes B1

and B2, then it might only be included in Ñ+ when considering, say, the verified cube B1. This
situation arises if B2 is a larger recursively verified cube, and the smaller cube B1 intersects B2 on
an edge which has a sign change for B2, whereas the intersecting edge B1 ∩B2 ⊂ B1 is all positive.
In rare situations, this observation can result in a recursively verified cube B for which only 4k− 1
cubes overlapping with the edges of B are added, while exactly one corner cube is not. (For this
to happen the nodal line has to pass within distance 1/M from the only negative corner of B.) In
this case, one also has to add the (k− 2)2 cubes from GM which lie completely in the interior of B
to Ñ+, in order to avoid the creation of an artificial loop. In our implementation this is achieved
by a second sweep through the recursively verified cubes with exactly one negative corner.

We illustrate the construction of Ñ+ for the positive nodal domain N+ of a random trigono-
metric polynomial with K = 8, shown in dark blue in the left image of Figure 6. The center image
shows the final recursively verified adaptive grid, and the resulting cubical approximation Ñ+ of N+

is shown on the right in dark blue. Notice the appearance of the little “spines” which are due to
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Figure 6: Nodal domains of a bivariate random trigonometric polynomial of degree K = 8, its
recursively verified adaptive grid, and the cubical approximation Ñ+ of N+.

the above-mentioned fact that cubes from GM which intersect an edge of the verified adaptive grid
might only be added when processing one of the adjacent verified cubes.

3 Proof of correctness for verified homology

In this section, we address the fundamental concern of whether the computed topological informa-
tion is accurate. Here we prove that using the construction outlined in Section 2, we either obtain
the correct Betti numbers or the algorithm returns a failure. For now, we return to the discussion
of the original version of the algorithm described in Section 2, i.e., the version without recursion.
Recall that we define a cubical approximation N+ of the nodal domain N+ based on the following
construction.

We first compute a nonuniform cubical decomposition of Γ in which every element passes the
appropriate verification test. Setting 1/M to be the finest (smallest) cube size in this grid, we
next construct an extended uniform grid KM of size 1/M on Γ by adding cubes of the same size
1/M along the left and bottom edges of Γ. The function signs on the vertices of KM ∩ Γ are then
determined rigorously. Finally, we set

N+ :=
⋃

{B ∈ KM | the upper right hand vertex of B has sign +}. (9)

(Notice that KM is just a translation of GM from the last section.) An adaptive grid allows us to
more efficiently approximate the topology of N+ (see for example Figure 3). However, the input to
the computational homology software should be a cubical complex on a grid that is homeomorphic
to an integer lattice. This necessitates the refinement to KM and the definition of N+ on KM .
However, some of the cubes in KM may not pass the appropriate verification. Figure 7 shows an
example where a larger cube satisfies the verification criteria, but the verification step necessarily
fails on a cube in the refined grid. For simplicity of presentation, in the proof below we assume
that each cube in the uniform grid KM satisfies the verification criteria. In this case we prove that
the cubical approximation N+ is homeomorphic to the nodal domain N+, and, therefore, that the
homology computed for N+ is also the homology of N+. One can use the techniques from the
proof below to show that if each cube in an adaptive grid is verified and M is chosen so that KM

is a uniform refinement of this grid, then N+ is again homeomorphic to N+.
The construction of a homeomorphism from N+ ∩ Γ to a cubical set begins by defining a map

h on N+ ∩ B for each B ∈ GM and B ⊂ Γ. For a fixed B we consider the origin of R2 to be the
lower left vertex of B, and the coordinates (x, y) are the horizontal and vertical distances from this
vertex. Let Π : R× [0, π/2] → [0,∞)2 denote the polar coordinate map Π(r, θ) = (r cos(θ), r sin(θ)).
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Figure 7: The large square has been verified so that f is monotone in the y-direction and the nodal
line (blue) is the graph of a function of x, but the lower left subcube does not pass the verification
test since f does not have constant sign there.

Case (a): B has the sign structure shown in Figure 4(a).
In this case, the verification step assures that f(x) > 0 for all x ∈ B. We define the homeomorphism
h : B → B on this cube to be the identity map h(x) = x as shown in Figure 8(a).
Case (b): B has the sign structure shown in Figure 4(b).
The verification step establishes that f is monotone on all horizontal and vertical lines in B.
Therefore, there exists a continuous function r∗ : [0, π/2] → (0,∞) such that (r∗(θ), θ) is the unique
zero of f(Π(·, θ)) in B and N+ ∩B = {Π(r, θ) | 0 ≤ r ≤ r∗(θ)}. Consider the map h : N+ ∩B → B
defined by h(0, 0) = (0, 0) and for (x, y) )= 0

h(Π−1(x, y)) = Π
(

rρ(θ)
r∗(θ)

, θ

)
where ρ(θ) =






sec(θ) for 0 ≤ θ ≤ tan−1(1
2)

1
2 csc(θ) for tan−1(1

2) ≤ θ ≤ π
4

1
2 sec(θ) for π

4 ≤ θ ≤ tan−1(2)
csc(θ) for tan−1(2) ≤ θ ≤ π

2

.

Then the image h(N+ ∩ B) = {Π(r, θ) | 0 ≤ θ ≤ π/2, 0 ≤ r ≤ ρ(θ)} is the set B with the upper
right quarter square removed as shown in Figure 8(b). By definition, h is one-to-one and hence a
homeomorphism onto its image.
Case (c): B has the sign structure shown in Figure 4(c).
The verification step assures that f is monotone on all vertical lines in B and that f(x, 0) > 0 and
f(x, 1) < 0. Therefore, there exists a continuous function y∗ : [0, 1] → (0, 1) such that (x, y∗(x)) is
the unique zero of f(x, ·) in B and N+ ∩B = {(x, y) | 0 ≤ y ≤ y∗(x)}. Define h : N+ ∩B → B by

h(x, y) =
(

x,
y

2y∗(x)

)
.

Then the image h(N+ ∩ B) = [0, 1] × [0, 1
2 ] is the lower half of B as shown in Figure 8(c). By

definition, h is one-to-one and hence a homeomorphism onto its image.
Case (d): B has the negation of sign structure shown in Figure 4(b) rotated by 180◦.
The verification step establishes that f is monotone on all horizontal and vertical lines in B.
Therefore, there exists a continuous function r∗ : [0, π/2] → (0,∞) such that (r∗(θ), θ) is the
unique zero of f(Π(·, θ)) in B and N+ ∩ B = {(Π(r, θ) | 0 ≤ r ≤ r∗(θ)}. Consider the map
h : N+ ∩B → B defined by h(0, 0) = (0, 0) and for (x, y) )= 0

h(Π−1(x, y)) =
(

rρ(θ)
r∗(θ)

, θ

)
where ρ(θ) =

{
1
2 sec(θ) for 0 ≤ θ ≤ π

4
1
2 csc(θ) for π

4 ≤ θ ≤ π
2

.
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Figure 8: Possible cases for N+
l ∩B (shaded region), for B ∈ G with the specified sign structure.

Then the image h(N+ ∩B) = {Π(r, θ) | 0 ≤ θ ≤ π/2, 0 ≤ r ≤ ρ(θ)} is the lower left quarter square
in B as shown in Figure 8(d). By definition, h is one-to-one and hence a homeomorphism onto its
image.

Note that in the case that the sign structure of B is all negative signs, the verification step
establishes that N+ ∩ B = ∅. Moreover, the definitions of h on the internal edges of N+ agree
(after translation of the origin in each box) so that h is well-defined and one-to-one on all of N+.
We now consider the image of h : N+ → Γ. This image is related to N+ in a natural way. Let
N+

l := N+ + (l, l) be the shift of N+ by the vector (l, l) (see Figure 8). Then h(N+) = N+
l ∩ Γ

and h : N+ → N+
l ∩ Γ is a homeomorphism. Furthermore, it is not difficult to check that N+

l ∩ Γ
is homeomorphic to N+

l . Since N+
l is just a shift of N+, we now have that N+ is homeomorphic

to N+.
We close this section with a comment on the recursive version of the algorithm as presented

at the end of Section 2. It is immediately clear that the above proof technique must be modified
slightly because the monotonicity of the nodal line within each verified box in the final adaptive
grid can no longer be guaranteed. Nevertheless, the result still applies to the recursive version of the
algorithm if we construct approximating cubical complexes as mentioned at the end of Section 2 and
as shown in Figure 6. While the resulting proof is a bit more involved technically, the fundamental
arguments do not change. For the sake of clarity and brevity we have therefore included only the
non-recursive case.

4 Results and comparison to probabilistic estimates

4.1 Two-dimensional level sets of a double-well potential

In this section we begin assessing the performance of our original, non-recursive verification al-
gorithm by applying it to a simple special case. In particular, we compare our algorithm to the
probabilistic result by Niyogi, Smale, and Weinberger [40] which was already mentioned briefly in
the introduction. More precisely, we study the performance of the algorithm in relation to the
condition number 1/τ introduced in [40]. The inverse τ of the condition number is defined for a
compact embedded manifold X ⊂ Rd and is the largest number such that the open normal bundle
about X ⊂ Rd of radius r is embedded in Rd for all r < τ . The results in [40] then provide a
probabilistic algorithm that allows one to compute the homology of X by randomly choosing N
sampling points xk ∈ X, k = 1, . . . , N , from the manifold, and then computing the homology of
the union ∪N

k=1Bε(xk) of ε-balls centered at these points. The number N depends on the inverse
condition number τ , the volume of the manifold, and on the specified correctness probability for the
homology computation. In addition, the radius ε has to be chosen sufficiently small— in particular
smaller than τ . The sampling size N is the main measure for the complexity of the probabilistic
algorithm in [40].
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Figure 9: Sample images of the double-well nodal domains together with the final grid produced by
the homology verification algorithm. From left to right the images correspond to C-values slightly
larger than c0 = −1/4, slightly less than c0 = 0, and slightly larger than c0 = 0, respectively. In
each case we have γ = |C − c0| = 0.00625.

At first glance, the results of [40] cannot be applied directly to the situation of nodal domains
considered in the present paper, since our manifolds are full-dimensional manifolds with boundary.
Thus, we concentrate on a simple special case by considering the nodal domains of the function

HC(x, y) = 1
2x2 − 1

4x4 − 1
2y2 + C . (10)

The positive nodal domain is empty for C < −1/4. When −1/4 < C < 0, the nodal domain
consists of two topological disks which merge together at a single point at the origin as C → 0−

and contract to two points as C → −1/4+. For C > 0, the nodal domain is connected, but has a
concave neck which pinches to single point at the origin as C → 0+. At both pinching events as
C → 0±, the curvature of the nodal line becomes infinite. One can easily check that in this simple
setting, the results in [40] still apply if one slightly modifies the definition of τ above. For this, let τ
denote the largest number such that the open outward normal bundle on the boundary of X with
radius r is still embedded in Rd for all r < τ .

Using this modified definition of the manifold parameter τ , one can easily compute that for the
explicit example of nodal domains of HC we have

τ(C) =






√
1−

√
1 + 4C =

2
√
|C|√

1 +
√

1 + 4C
for −1

4 ≤ C < 0
√

2C for C > 0 .

For C-values close to −1/4 the condition number 1/τ is actually close to one, even though the
topology of the nodal sets changes as C crosses the threshold −1/4. For C-values close to 0 the
condition number 1/τ becomes unbounded.

To gain more insight into the performance of our adaptive verification algorithm, we apply it to
the special case of the double-well potential defined above, but in a slightly modified version. Rather
than considering HC : R2 → R as defined in (10), we consider the nodal sets of the composition of
a scaled version of HC and a rotation of the plane around the point

rc =

(
3
√

3
10

,
2
√

2
5

)
≈ (0.5196, 0.5657)

with random angles θ ∈ [0, 2π). In other words, we consider scaled and randomly rotated versions
of the nodal sets. In this way, it is possible to determine typical scalings of the central performance

15



!"
!!#

!"
!!"

!"
!#

!""

!#"

$""

$#"

%""

%#"

!

&
'(
)
*
+
,

!"
!!#

!"
!!"

!"
!#

!""

!#"

$""

$#"

%""

%#"

&""

&#"

#""

!

'
()
*
+,-
*
./
(0
/
1
.*
2
3
+/
(1
*
++4

!"
!!#

!"
!!"

!"
!#

!"

!#

$"

$#

%"

%#

&"

!

'
()
*
+,
-.
/
0(
,
.
/
01
/
+)
2
*
3
(4
(!
"
"
"

!"
!!#

!"
!!"

!"
!#

#

!"

!#

$"

$#

!

%&
'
$
()

Figure 10: Dependence of averaged key performance parameters of our verification algorithm on
the absolute value γ = |C − c0|. From top left to bottom right the images show the dependence of
the total number of boxes in the final adaptive grid, the number of calls to the central rectangle
verification function, the number of interval computations, and the logarithm of the verification
size. The solid blue, dashed green, and solid red curves correspond to values C = −0.25+, C = 0−,
and C = 0+, respectively. Circled data points are lower estimates, see the text for more details.

parameters of our algorithms, which are not affected by grid alignment issues. More precisely, we
consider the θ-dependent potentials

HC,θ(x, y) = HC
(
5R−1

θ ((x, y)− rc)t) , with Rθ =
[

cos θ − sin θ
sin θ cos θ

]
.

Some typical images of the resulting nodal domains are shown in Figure 9, together with the grids
obtained from our verification algorithm.

Our simulations concentrate on the C-values at which topological changes occur, i.e., we consider
the cases C ≈ −1/4 and C ≈ 0. At these threshold values our algorithm necessarily has to fail,
and we study the performance of the algorithm for C-values close to these critical values, i.e., we
consider

C = c0 + csγ with γ =
2−k

10
, k = 0, . . . , 49 , and (c0, cs) ∈ {(−1/4, 1), (0,−1), (0, 1)} .

These three possible choices for (c0, cs) are abbreviated by C = −1/4+, C = 0−, and C = 0+,
respectively. For each of these values, we choose 5000 angles θ from a uniform distribution on [0, 2π)
and apply the verification algorithm to the unit square [0, 1]2. If the algorithm verifies the topology
of the nodal domains, four key performance parameters are recorded. These are the total number of
boxes in the final adaptive grid, the number of calls to the central rectangle verification function, the
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C = −0.25+ C = 0− C = 0+

# boxes −9.410 ln γ + 67.4 −7.899 ln γ + 57.9 −7.939 ln γ + 57.2
# verify rect. calls −13.125 ln γ + 88.7 −10.534 ln γ + 78.9 −10.587 ln γ + 77.9

# interval eval./1000 −1.089 ln γ + 6.5 −0.794 ln γ + 6.2 −0.798 ln γ + 6.1
log2 M −0.719 ln γ + 4.2 −0.723 ln γ + 2.5 −0.722 ln γ + 2.5

Table 1: Numerical least-squares fits for the data in Figure 10.

number of interval computations, and the logarithm of the verification size M . Finally, we average
these parameters over all verified runs. The results of these simulations are contained in Figure 10,
where the dependence of the averaged key parameters on the absolute value γ = |C − c0| is shown.
From top left to bottom right the images show the dependence of the total number of boxes in the
final adaptive grid, the number of calls to the central rectangle verification function, the number
of interval computations, and the logarithm of the verification size. The solid blue, dashed green,
and solid red curves correspond to values C = −0.25+, C = 0−, and C = 0+, respectively. These
results indicate that there exist affine relations between the parameters and the logarithm of γ, and
least-squares fits can be found in Table 1.

The almost perfect scaling of these performance parameters is somewhat surprising, especially
since the smallest value of γ is given by 1.77636 ·10−16, and in fact the scaling seems to break down
for γ-values close to machine precision, at least in the case C = −1/4+. In order to understand this
effect, notice that in our simulations we simply discard the runs which can not be verified using our
algorithm, which of course biases the results. If this happens, the actual data points are only lower
bounds. Data points for which not all of the 5000 runs could be verified using our algorithm are
indicated as circles in Figure 10. However, it turns out that in practice, all of the 5000 simulations
were verified for all γ-values larger than 5·10−11 in the case C = −1/4+, and for γ larger than 10−13

in the cases C = 0±. In addition, the verification percentage remains well above 99% as long as γ
is larger than 2 · 10−13 for C = −1/4+, and for γ larger than 5 · 10−16 in the cases C = 0±. As
such, we do believe that the scalings shown in Figure 10 are correct, with the exception of γ-values
close to machine precision for C = −1/4+.

In order to relate our simulations to the probabilistic algorithm in [40], one has to distinguish
between the cases C = −1/4+ and C = 0±. In the former case, the manifold parameter τ is
close to 1, i.e., the algorithm in [40] is “well-conditioned.” In fact, one can easily see that for any
value C ≥ −1/4 which is sufficiently close to −1/4 one only has to sample a few points from the
nodal set N+ to achieve a high correctness probability. Of course, this method does assume a
priori knowledge of the location of the nodal set, which in general is not available. On the other
hand, our algorithm finds the components of the nodal sets by using an adaptive grid whose size is
logarithmic in the size of the actual nodal domains.

Finally, consider the case C = 0±. In this case, one can readily see that the sample size N for the
probabilistic algorithm in [40] has to be polynomial in 1/τ . This large growth rate is a consequence
of the fact that the radius ε has to be smaller than the manifold parameter τ , yet one has to sample
enough points to obtain a suitable cover of the whole of X and its volume converges to a positive
number for C → 0±. On the other hand, our method still only requires an adaptive grid whose size
is logarithmic in the condition number 1/τ , in addition to making no a priori assumption about
knowledge of the nodal domains.

4.2 Random trigonometric polynomials

In previous theoretical work, Mischaikow and Wanner [34] study the question of determining the
homology of nodal domains of random fields using uniform discretizations. In particular, for the
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case of homogeneous Gaussian random fields, i.e., spatially periodic random Gaussian functions,
they could establish lower bounds on the probability that the homology of the nodal domain is
isomorphic to the homology of the cubical approximation obtained from a uniform discretization
of size M . In this section, we employ our verified computational approach to assess the tightness
of these theoretical bounds in two space dimensions.

The sharpness of these estimates was established in the one-dimensional case using non-rigorous
computations in [14]. These one-dimensional simulations could be performed using regular numeri-
cal methods, since one can easily choose the spacing of the sampling points close enough to actually
resolve all the nodal domains, and the computation of the number of components of these nodal
domains is straightforward. In two dimensions, employing large discretization sizes is problematic,
since they result in very long computation times for determining the homology. For this reason, we
now use the verified homology algorithm described in the previous sections. More precisely, from
now on, we employ the recursive version of the algorithm as described at the end of Section 2.

To investigate the sharpness of the rigorous probabilistic estimates derived in Mischaikow and
Wanner [34] in two-dimensions, we concentrate on random periodic Gaussian fields as described
in the introduction, see the discussion centered around equation (2). Rather than considering
general random Fourier series, we consider a special class of random trigonometric polynomials
on Γ = [0, 1]2 of the form

f(x, ω) =
K∑

k,!=0

αkα! · (gk,!,1(ω) cos(2πkx1) cos(2π)x2) + gk,!,2(ω) cos(2πkx1) sin(2π)x2)

+gk,!,3(ω) sin(2πkx1) cos(2π)x2) + gk,!,4(ω) sin(2πkx1) sin(2π)x2)) (11)

with K ≥ 3, where gk,!,m are random variables defined over a common probability space (Ω,F , P)
which are independent and normally distributed with mean 0 and variance 1. As outlined in the
introduction, these random trigonometric polynomials are covered by the theory on random Fourier
series of the form (2) in [34, Theorem 3.10] if one defines ak,! = αkα!. If we further assume that at
least two of the numbers αk are nonzero, then (3) shows that the probability of a correct homology
computation for the random nodal domains N± via uniform cubical approximations N±

M satisfies

1− P
{
H∗(N±) ∼= H∗(N±

M )
}
≤ 1067π2

18M2
·
(
2A2A0 + A2

1

)2

A2
0A

2
1

+ O

(
1

M3

)
, (12)

where

Ap =
K∑

k=0

k2pα2
k .

Notice that due to the particular choice ak,! = αkα! these constants replace the doubly indexed
constants in (4). We begin by considering the case of standard random trigonometric polynomials
with standard normal coefficients, i.e., we consider the choice

αk = 1 for 1 ≤ k ≤ K , and αk = 0 otherwise. (13)

In this case, the above formula (12) reduces to

1− P{H∗(N±) ∼= H∗(N±
M )} ≤ 1067π2

18M2
· 1
900

·
(
46K2 + 51K − 7

)2 + O

(
1

M3

)

∼ 564443π2

4050
· K4

M2
,

which suggests that, in order for the homology computation to be accurate with high confidence, we
have to choose the discretization size M proportional to K2 for K →∞. At first glance this result
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Figure 11: Numerical results for two-dimensional random trigonometric polynomials (11) satisfy-
ing (13). The top plot is the probability of computing the correct homology as a function of the
discretization size M for degree K = 2, . . . , 16 (from left to right). The discretization sizes MK

which give a 90% probability are marked red. The lower left figure contains these values as a func-
tion of K together with a fitted curve. The lower right figure shows the exponents αp in the fitted
relations MK = Cp · Kαp as a function of the threshold probability p. The dashed blue line shows
the predicted value of 2, the dashed green line is for the one-dimensional predicted exponent 3/2.

does seem surprising, and it is not clear why the two-dimensional situation requires considerably
finer discretizations.

In order to test this probabilistic prediction, we applied our recursive algorithm to trigonometric
polynomials (11) satisfying (13) for K = 2, . . . , 16. For each value of K we performed between 300
and 1000 runs of our verified homology computations (300 runs for N = 13, . . . , 16, and 1000 runs for
the remaining values). Within each of these runs, we then use the correct homology information to
assess the correctness of regular homology computations based on sampling from equidistant grids
with sizes between M = 4 and M = 4096. In this way, one obtains the probability of a correct
homology computation as a function of M , for each value of K. The resulting correctness probability
curves are shown in top image of Figure 11, where the curves from left to right correspond to
increasing values K = 2, . . . , 16. If one now specifies a desired correctness probability level p ∈ (0, 1),
one can determine for each K the value MK which gives correctness probability p. Based on the
probabilistic result in [34] one would then expect that

MK = Cp · Kαp with αp ≈ 2 as p → 1 .

For example, for the special case p = 0.9, the red dots in the top image of Figure 11 indicate the
values MK , and their behavior as a function of K is shown in the lower left image. A least-squares
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Figure 12: Normalized one-dimensional marginals ρ(z)/ρ(0) of the spatial correlation functions
for three classes of random fields of the form (11). From left to right the images correspond
to K = 4, 8, 16, within each diagram the red, blue, and green curves correspond to trigonometric
polynomials (11) satisfying (13), (14), and (15), respectively.

fit of the data gives the blue curve in the lower left image with values Cp = 5.4202 and αp = 1.9652.
Since we are interested in results for large K, the fit is computed only from the values K = 4, . . . , 16.
The dependence of the exponent αp on the threshold probability p is shown in the lower right image
of Figure 11, which indicates that αp ≈ 2 for p close to 1.

The above results indicate that asymptotically, the results in [34] do indeed provide the correct
scaling for the discretization size M as a function of the degree K of the random trigonometric
polynomial (11). There are, however, situations in which these results are an overestimation. To
illustrate this, we now consider two more classes of random trigonometric polynomials (11). For
the first class, we assume that

α2! = 1 for 1 ≤ 2! ≤ K , αK = 1 , and αk = 0 otherwise, (14)

while for the second class we assume

α2! = 1 for ) =
⌊
log2

2K − 1
4

⌋
, αK = 1 , and αk = 0 otherwise, (15)

i.e., only the K-th and the 2!-th coefficients are non-zero, where 2! denotes the largest power of 2
strictly less than K. One can easily show that for both of these choices of the coefficients αk the
estimate (12) remains qualitatively unchanged, i.e., we still have to choose the discretization size M
proportional to K2 for K → ∞. However, if one repeats the above simulations for the two new
classes of trigonometric polynomials, different scalings are obtained. For the case (14) one obtains
a growth rate MK ∼ K1.73, whereas for the case (15) one observes linear growth MK ∼ K1.00.
Thus, while the probabilistic estimates of [34] clearly are suboptimal in both of these cases, our
adaptive numerical method takes advantage of the reduced necessary discretization size.

The discrepancy between the uniform grid size suggested by the probabilistic estimates and
the grid size required for our numerical approach can be explained with the help of the spatial
correlation function of the random trigonometric polynomials (11). Due to the special form of
these random fields, their spatial correlation function is explicitly given by

R(x, y) = Ef(x)f(y) =
K∑

k,!=0

α2
kα

2
! · cos (2πk (x1 − y1)) · cos (2π) (x2 − y2)) ,

i.e., we have

R(x, y) = ρ (x1 − y1) · ρ (x2 − y2) , where ρ(z) =
K∑

k=0

α2
k · cos (2πkz) . (16)
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Figure 13: Nodal domains of random trigonometric polynomials (11) for K = 16. From left to right
the images correspond to trigonometric polynomials satisfying (13), (14), and (15), respectively.

The spatial correlation function is the central tool for assessing whether the function values f(x)
and f(y) of the random field f at points x in y behave independently or not. To see this, note that

E |f(x)− f(y)|2 = R(x, x)− 2R(x, y) + R(y, y) = 2ρ(0)2 ·
(

1− ρ(x1 − y1)
ρ(0)

· ρ(x2 − y2)
ρ(0)

)
,

as well as
−1 ≤ ρ(z)

ρ(0)
≤ 1 for all z ∈ R .

These formulas show that if x and y are chosen in such a way that ρ(x1 − y1) = ρ(x2 − y2) = ρ(0),
then we have f(x) = f(y) almost surely. Furthermore, even if the value of ρ(x1− y1) · ρ(x2− y2) is
only sufficiently close to ρ(0)2, the above formulas still imply that f(x) ≈ f(y) with high probability.
Similarly, one can show that if ρ(x1− y1) ·ρ(x2− y2) is close to −ρ(0)2, then we have f(x) ≈ −f(y)
with high probability. Finally, one can show that if ρ(x1−y1) ·ρ(x2−y2) is close to 0, the behavior
of the function values f(x) and f(y) is basically independent.

The effects of spatial correlations on the geometry of nodal domains can be seen in Fig-
ures 12 and 13. The first of these figures contains sample plots of the normalized one-dimensional
marginals ρ(z)/ρ(0) of the spatial correlation functions for the three classes of random fields con-
sidered above. These plots indicate that for random trigonometric polynomials satisfying (13) the
function values f(x) and f(y) are basically uncorrelated, unless of course x is close to y. A sample
resulting nodal domain patterns is shown in the left-most image of Figure 13. However, for random
trigonometric polynomials satisfying (15), the marginal ρ(z)/ρ(0) attains the value 1 periodically
throughout the domain, which leads to periodic nodal domain patterns, see the right-most image
in Figure 13. In contrast, random trigonometric polynomials satisfying (14) exhibit a normalized
marginal which does attain values far away from zero on significant parts of the domain, and this
effect seems to increase with increasing K. (It can be shown that if z is a real number with finite
dyadic representation, then ρ(z)/ρ(0) → 1 for K → ∞.) In fact, as one can see from the center
image in Figure 13, the resulting nodal domains are less “random” than the left-most image.

How can these observations be used to explain the numerical results from above? For this one
has to take a closer look at the proof techniques used in [34], which are fundamentally local in
nature. By introducing a suitable notion of admissibility for square subdomains of Γ, it is first
shown that if all the basic cubes determined by the discretization grid points are admissible, then
the homology of the nodal domains N± is isomorphic to the homology of the cubical approxima-
tions N±

M . The probabilistic part of the main results in [34] then consists in deriving upper bounds
on the probability that a square of small side length is not admissible. These local probability es-
timates are indeed sharp, as follows a posteriori from the first simulation presented in this section.
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However, in order to estimate the probability of a correct homology computation for the complete
domain Γ, the results in [34] simply add all these local probability estimates. This approach can
only be expected to lead to sharp estimates if the admissibility of different subsquares are indepen-
dent events, i.e., if the spatial correlation function is close to zero for x )= y. Clearly, this is only
the case if the coefficients αk satisfy (13).

4.3 The stochastic Cahn-Hilliard model

One of the main motivations for our results is the study of deterministic or stochastic evolution
equations. As an example, consider the Cahn-Hilliard-Cook model (1). This stochastic partial
differential equation has been proposed as a model for phase separation in metallic alloys and
produces complicated patterns, see for example [6, 8, 10, 13, 45] and the references therein. As we
mentioned in the introduction, computational homology can be used to quantify these complicated
structures [21], and the question of choosing the correct discretization size M for the homology
computations is of utmost importance. Notice that if we are interested in the evolution of (1)
originating at a random field, then for any time t > 0 the solution u(t, ·) is a random field over Γ.
In general, however, the coefficients in the Fourier expansion of this random field will be neither
Gaussian nor independent. An important special case where these properties are realized is the
linearized Cahn-Hilliard-Cook model

∂u

∂t
= −∆

(
ε2∆u− F ′′(ū)u

)
+ σ · ξ in Γ ⊂ Rd , (17)

provided the random initial condition satisfies the assumptions of Theorem 2.7 in [34]. In (17),
the function ū denotes a given spatially homogeneous equilibrium solution of the deterministic
Cahn-Hilliard model.

In the remainder of this section, we will apply our rigorous computational techniques both in
a one- and a two-dimensional setting. Thereby, we are not only able to assess the sharpness of the
probabilistic results in [34] for case of the linearized Cahn-Hilliard model (17), but we also study the
effect of non-Gaussianity in the nonlinear case. In addition, we address the question of homology
accuracy as a function of time, since it is well-known that whenever the nodal lines of a function
exhibit singularities, homology computations via discretizations will introduce errors — regardless
of the discretization size. In all of our studies below, we consider the Cahn-Hilliard-Cook model (1)
or its linearization (17) for the classical choice of double-well potential F (u) = (u2 − 1)2/4, as well
as ū = 0, i.e., we have −F ′(u) = u− u3 in (1) and −F ′′(ū) = 1 in (17).

4.3.1 The one-dimensional case

We begin our study of the Cahn-Hilliard model by considering the deterministic one-dimensional
setting, i.e., we consider Γ = [0, 1] and σ = 0 in (1) and (17). Specifically, our goal is to assess
the sharpness of the results in [34] for the linearized equation, and to determine how well they
apply in the nonlinear, and therefore non-Gaussian, situation. All of our simulations use a one-
dimensional version of the rigorous techniques described in Sections 2 and 3, as well as periodic
boundary conditions. For the linearized equation in this setting, we assume further that the initial
condition u(0, ·) is a random periodic Gaussian field of degree K = Kε. Then for every t > 0 the
solution of (17) with σ = 0 is explicitly given by

u(t, x,ω) =
Kε∑

k=1

eλkt · (g2k(ω) · cos(2kπx) + g2k−1(ω) · sin(2kπx)) ,

where λk = 4π2k2·(1−4π2k2ε2) denotes the k-th eigenvalue of the linearized Cahn-Hilliard operator.
Choosing Kε = 7r/(2πε)8, for some fixed r > 1 guarantees that for every small ε > 0 the initial
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Figure 14: Verified numerical results for the probability pfailure of a false homology computation in
the linearized Cahn-Hilliard model (left) and the nonlinear Cahn-Hilliard model (right). From top
to bottom the solid lines correspond to M = 25, 50, 100, and the dashed line shows the function Iε(τ)
from the probabilistic estimate. All curves have been scaled by the factor 48πε3M3.

condition contains all unstable modes, i.e., all modes which are responsible for the formation of the
complicated patterns.

The explicit representation of the solution u of (17) shows that the results for random Fourier
series in [34, Theorem 2.7] are readily applicable. In fact, if we denote the nodal domains of u(t, ·)
by N±(t) and their cubical approximations by N±

M (t), then the probability for a correct homology
computation is bounded by

P
{
H∗(N±(t)) = H∗(N±

M (t))
}

≥ 1− 1
48πε3M2

· Iε
(
t/ε2

)
+ O

(
1

M3

)
.

In this estimate, the function Iε(τ) is defined by

Iε(τ) =
S0,ε(τ)S2,ε(τ)− S1,ε(τ)2

S0,ε(τ)3/2S1,ε(τ)1/2
,

where

S!,ε(τ) =
Kε∑

k=1

(2πε)2!+1 k2!e2ε2λkτ ε→0−→
∫ r

0
s2!e2τs2(1−s2) ds .

Notice that the last limit shows that for every fixed τ > 0 the value Iε(τ) converges as ε → 0, say
to a limit function I0(τ).

The above estimate implies that in order to compute the homology of the nodal domains cor-
rectly with high probability, we have to choose M ∼ ε−3/2. This is in accordance with the fact
that the observed patterns exhibit a typical thickness which is proportional to ε as ε → 0. In
addition, the form of the above probability estimate automatically yields the correct time scaling
for the phenomenon of spinodal decomposition: for small ε > 0, one expects the time frame to be
proportional to ε2, which is of course reflected by the fact that the t-dependent prefactor in the
probability estimate is basically given by I0(t/ε2).

In order to demonstrate the accuracy of these probabilistic predictions we performed the follow-
ing computations. For ε = 0.005 and three values of M , we computed the actual probability that
the first discretization interval [0, 1/M ] contains more than one zero, i.e., that one cannot determine
the correct topology of the nodal domains from the function values at 0 and 1/M . According to the
above discussion, this probability should asymptotically be given by Iε(t/ε2)/(48πε3M3) for large
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values of M , and this is confirmed in the left graph of Figure 14. In fact, the asymptotic behavior
predicted by [34, Theorem 2.7] is realized almost exactly for the discretization size M = 100, and
at least qualitatively for M = 50. The significantly different behavior of the curve for M = 25
can be explained as follows. Using the results in [16, 17] one can easily show that the expected
value EZ(t) of the number of zeros Z(t, ω) of the function u(t, ·, ω) is given by

EZ(t) = 2 ·
(

Kε∑

k=1

k2e2λkt

)1/2

·
(

Kε∑

k=1

e2λkt

)−1/2

.

The graph of EZ(t) is qualitatively similar to the M = 25 curve in Figure 14; after an initial
decrease to a minimal value of 41.18 at t/ε2 ≈ 2.4, the graph increases again and limits to 44.94 as
t →∞. Thus, the probability that the interval [0, 1/M ] for M = 25 contains more than two zeros
is fairly large. In fact, the computations show that for t/ε2 ≈ 2.4 this probability is 59.6%, while
for large t it stabilizes at 79.0%.

The right graph in Figure 14 contains analogous numerical results for the nonlinear Cahn-
Hilliard equation (1), again in the deterministic situation with σ = 0. Notice that now the curve
for M = 25 exhibits a marked decay starting at around t/ε2 ≈ 70, and the remaining curves show
similar, although not as pronounced, behavior. On the other hand, for times t ≤ 70ε2 the curves
in both graphs are indistinguishable, despite the fact that they were obtained from a linear and
a nonlinear model, respectively. Recent theoretical work has shown that in fact during the initial
phase separation regime of the Cahn-Hilliard equation the effects of the nonlinearity are suppressed
for an unexpectedly long time [6, 8, 42, 43, 45]. These results have established rigorous lower
bounds on the duration of the linear regime. In contrast, our results provide an upper bound on
the onset of nonlinear behavior in the Cahn-Hilliard equation, and complement our findings in [21].
We would like to point out, however, that even during the early stages of phase separation, the
Gaussianity of the functions u(t, ·) is lost, and it is remarkable that the results of [34] still correctly
predict the homology correctness probability.

4.3.2 The two-dimensional case

In this final section of the paper we turn our attention to the two-dimensional nonlinear Cahn-
Hilliard-Cook model (1) on the square domain Γ = [0, 1]2. Our goals are two-fold. On the one
hand, we want to assess the efficiency of our rigorous computational algorithm and describe the
variations in key parameters as one follows the evolution of a sample solution to (1). On the
other hand, we would like to obtain probabilistic information based on random ensembles of initial
conditions which sheds light on the correctness of homology computations as a function of the used
grid size and of time. These latter results are motivated by [21].

Throughout this section, we consider (1) on the square domain Γ = [0, 1]2 subject to homo-
geneous Neumann boundary conditions and with F (u) = (u2 − 1)2/4. The interaction length is
chosen as ε = 0.025, and we simulate solutions originating at random perturbations of the unstable
homogeneous state ū ≡ 0. These random perturbations have vanishing total mass and maximum
norm equal to 10−4. The solutions are computed on a time interval [0, te] that is chosen as in [21],
which covers both the spinodal decomposition process and the beginning of the coarsening regime.
For more background information we refer the reader to [6, 7, 8, 9, 10, 13, 29, 30, 31, 42, 43, 45].

In order to assess the effects of noise, we consider both the deterministic equation with σ = 0
and the stochastic version with σ = 0.025. In the latter case, the noise process ξ = Ẇ is given as
the generalized derivative of a Q-Wiener process W which is cut-off noise on the standard cosine
basis functions used in the spectral method for simulating (1). In other words, the noise process is
white in time and colored in space.
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Figure 15: Sample nodal domains of a solution to the Cahn-Hilliard equation (1) with ε = 0.025
and σ = 0. The left image shows the pattern at time t = 0.1te, the right image at time t = 0.9te.
Both images also contain the adaptive grid produced by our recursive verification algorithm.

As a first test of the recursive verification algorithm described in Sections 2 and 3 we consider one
solution path each for the deterministic Cahn-Hilliard equation and the stochastic Cahn-Hilliard-
Cook model, with parameters as described above. As was mentioned earlier, verifying the nodal
domains of evolving patterns can fail. Every time the nodal lines of the phase function u(t, ·) exhibit
singularities, no homology computation using a finite size grid will be able to determine the correct
homology. See for example [25, Figure 8.1]. In the context of evolving patterns such singularities
in the nodal lines occur every time the topology of the nodal sets changes. While one would expect
that these times form a set of measure zero, any verification with a maximal resolution should
fail on an open set of times. Thus, we do expect that at least on some noticeable portion of the
underlying time interval our algorithm will fail.

In order to determine the actual size of these failure intervals, we run the verification code for
the solution snapshots at times t = k · te/1000, where k = 1, . . . , 1000. The somewhat surprising
results of these simulations are shown in Figure 16. It turns out that in all of the 1000 solution
snapshots the algorithm was able to verify the nodal domains, i.e., the set of times where verifica-
tion fails is extremely small. Furthermore, key parameters of the algorithm change in qualitative
agreement with the underlying topology of the nodal domains. This can be seen in the diagrams
of Figure 16, which depict the evolution of the total number of boxes in the final adaptive grid
(top left), the number of calls to the central rectangle verification function (top right), and the
number of interval computations (bottom left). In these images, the blue curves correspond to the
deterministic model, the red curves to the stochastic one. It is evident that all of these parameters
vary qualitatively in the same way. For comparison, the lower right image shows the evolution of
the )1-norm of the Betti number vector (β+

0 (t), β−0 (t), β+
1 (t), β−1 (t)), where β±k (t) denotes the k-th

Betti number of the nodal domain N±(t). While the agreement is not precise, the evolution of
the algorithm parameters qualitatively follows the topology evolution. Notice in particular that
while the deterministic evolution shows the nonmonotone behavior described in [21], the stochastic
evolution decays more or less monotonically.

Another quantity that is of importance for our algorithm is the verification size M , which is
defined as the inverse of the side length of the smallest rectangle in the adaptive verifying grid.
The verification size changes much more irregularly than the parameters shown in Figure 16, which
can be explained by taking another look at Figure 15. In both the patterns and the resulting
grids shown there, one can readily see regions with extremely fine adaptive grid, while the nodal
domain structure is nowhere near a topology change. This is an artifact of our dyadic subdivision
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Figure 16: Evolution of key parameters of our verification algorithm as a function of time, both for
a sample path of the deterministic (blue curves) and of the stochastic (red curves) Cahn-Hilliard
model. From top left to bottom right the images show the evolution of the total number of boxes in
the final adaptive grid, the number of calls to the central rectangle verification function, the number
of interval computations, as well as the )1-norm of the Betti number vector (β+

0 , β−0 , β+
1 , β−1 ).

method described in Section 2. All of the line segments determining the final grid are aligned with
the dyadic points in the base domain Γ. Thus, if the nodal lines get extremely close to points
with dyadic components with a large denominator, then the algorithm has to refine significantly in
that region. One easy possibility to address this issue is to not only start the binary subdivision
algorithm from the square base domain Γ, but also from subdivided versions, where the domain
is first subdivided into M2

0 squares of equal size and the algorithm is then run on each of these
smaller squares.

In order to describe “typical” behavior, we studied ensembles of 500 random initial conditions for
each of these models. We begin by considering verification sizes M(M0) with initial discretization
sizes M0 = 1, 3, 5, 7. Assume we only allow for a maximal verification size Mmax, based for example
on computational restrictions. How likely is it then that one cannot verify the nodal domain
geometry at a given point in time with a verification size at most Mmax? We computed these
failure probabilities from the ensembles of solution paths described above, in two scenarios. The
results are shown in Figure 17, both for maximal verification size Mmax = 500 (top row) and
for Mmax = 1000 (bottom row). For initial discretization sizes M0 = 1, 3, 5, 7 we tried verification
of the M2

0 subsquares using the dyadic subdivision algorithm, i.e., we rejected the verification
if the resulting verification size M(M0) satisfied M(M0) > Mmax, where we use the convention
M(M0) = ∞ if our algorithm did not verify at all. These curves are shown in blue, green, cyan,
and magenta for M0 = 1, 3, 5, 7, respectively. Finally, we combined all of these four verification
steps by letting M denote the smallest of these verification sizes, and rejecting the verification
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Figure 17: Temporal evolution of the probability of verification failure with verification size at
most Mmax = 500 (top row) and Mmax = 1000 (bottom row). The left column shows the curves
for the deterministic model, the right column corresponds to the stochastic one. In each case, the
top four curves are obtained using initial subdivisions of size M2

0 with M0 = 1, 3, 5, 7, as described
in the text. The red curve is obtained by using the smallest of these verification sizes.

if M > Mmax.
The results in Figure 17 show that in general, significant improvements can be achieved if one

runs the algorithm for a variety of different values of M0, and then uses the smallest possible
verification size. The computational overhead for this procedure is small. It can also be seen that
in the Cahn-Hilliard models, significant failure probabilities only occur at the beginning of the
phase separation process. Especially during the later coarsening regime the failure probabilities
are basically zero. Finally, the results of Figure 17 demonstrate a surprising effect of noise. While
in the very beginning of the evolution the added noise increases the failure probability, during the
subsequent stages of spinodal decomposition, i.e., for times roughly between 0.2te and 0.4te, the
noise actually leads to a decrease in these probabilities. This is due to the fact that noise accelerates
the phase separation and that the complexity of our algorithm is mostly dependent on the pattern
complexity. For more details see [6, 7, 8].

So far, we have only addressed the size necessary for verifying the geometry of the nodal domains
using interval arithmetic. But in many cases one would expect that computing the homology
using a smaller grid size, say using the (Mh + 1)2 equidistant sampling points (k/Mh, )/Mh), with
k, ) = 0, . . . ,Mh, in the square Γ should already provide the correct Betti numbers. This can
certainly be seen from the sample images in Figure 15. To study this question in more detail,
we use again the ensemble simulations from above, both for the deterministic and the stochastic
Cahn-Hilliard model. Recall that for these simulations we randomly choose initial conditions u0

close to the homogeneous state ū ≡ 0. Then if u(t, x;u0) denotes the solution of (1), we consider
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Figure 18: Temporal evolution of the probability of the event E(t, Mh, Mmax) defined in (18), for the
choice Mmax = 50000. The left image shows the curves for the deterministic Cahn-Hilliard model,
the right image for the stochastic Cahn-Hilliard-Cook equation. In both cases, the magenta, cyan,
green, blue, and red curves correspond to Mh = 32, 64, 128, 256, 512, respectively.

the event

E(t, Mh, Mmax) = {u0 : verification with size M ≤ Mmax is possible, and the Betti
numbers are correctly computed via the Mh-grid} , (18)

which consists of all initial conditions for which at time t the verification algorithm terminates
for u(t, ·;u0) with verification size M ≤ Mmax, and for which the Betti numbers of the nodal do-
mains N±(t;u0) of u(t, ·;u0) computed via the above sampling by (Mh + 1)2 points agree with
the verified Betti numbers. For our implementation, we use the minimal verification size M
among the M(M0) with M0 = 1, 3, 5, 7 as before. The probabilities of these events computed
from ensembles of size 500 and Mmax = 50000 are shown in Figure 18. The left image shows
the curves for the deterministic Cahn-Hilliard model, the right image for the stochastic Cahn-
Hilliard-Cook equation. In both cases, the magenta, cyan, green, blue, and red curves correspond
to Mh = 32, 64, 128, 256, 512, respectively. These computations show that already for Mh = 512,
the likelihood of obtaining the correct homology information is close to one for all times t, both for
the deterministic and the stochastic case. We would also like to mention that for the above choice
of Mmax = 50000, all of the solution snapshots were able to be verified with M ≤ Mmax.

We close this section by briefly commenting on the actual averaged Betti number evolution
curves for the Cahn-Hilliard model (1) with ε = 0.025. This ε-value is significantly larger than the
ones used in [21], and was chosen specifically to speed up our simulations. Nevertheless, it was
pointed out in [21] that the averaged Betti number evolution curves scale with ε2, since changing ε
can be thought of as rescaling the underlying domain Γ. Thus, our choice of ε corresponds to a very
small domain, where the Betti numbers usually stay in the single digits. It was conjectured in [21]
that upon averaging, even on such small domains one can still distinguish between the nonmonotone
evolution of the averaged Betti number curves for the deterministic Cahn-Hilliard model, and the
monotone decay resulting from the addition of noise. The curves shown in Figure 19 confirm this.
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Figure 19: Averaged Betti number evolutions for the deterministic Cahn-Hilliard model with σ = 0
(blue curves) and the stochastic Cahn-Hilliard-Cook with σ = 0.025 equation (red curves), in each
case for ε = 0.025. The left image shows the curves for β±0 , the right image is for β±1 ; in either
image the solid curve represents β+

k , while the dashed curve shows β−k .
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