Paths are generically realisable

Rupert H. Levene, University College Dublin; Polona Oblak, University of Ljubljana; Helena Šmigoc*, University College Dublin;

Building on the idea of Strong Spectral Property (SSP), we generalise the notion of the nowhere-zero eigenbasis in the following way. We show that given a connected graph G of order m, a finite set $\mathcal{Y} \subset \mathbb{R}^m \setminus \{0\}$, and a diagonal matrix Λ with distinct real diagonal elements, there exist matrices A and U so that A has the SSP and associated graph G, U is orthogonal, $U^T A U = \Lambda$ and Uv has no zero entries for all $v \in \mathcal{Y}$. We explore some applications of this result to the Inverse Eigenvalue Problem for Graphs.

Keywords: Inverse eigenvalue problem for graphs; Strong Spectral Property; Generic Realisability.