Degree Sequence Theorems for Measures of Connectivity
Michael Yatauro, Penn State–Brandywine, USA

Given a finite simple graph G, we can define many measures of connectivity. Classic examples include vertex connectivity and edge connectivity. If we consider the minimum number of vertices (resp. edges) that must be removed from G so that the remaining components all have order less than a fixed $k \geq 1$, we get k-component order connectivity (resp. k-component order edge connectivity). We will begin with a brief survey of existing results that use the degree sequence of a graph to determine a lower bound on its connectivity, edge connectivity, or k-component order connectivity. From there, we present new results for k-component order edge connectivity. When applicable, we will discuss interesting features, computational complexity, and demonstrate the role extremal graphs play for these theorems.

Keywords: connectivity, component order connectivity, degree sequence, best monotone, extremal graph