Ore-type Conditions for the Existence of Even $[a, b]$-factor in Graphs

Suil O*, Su-Ah Kwon, The State University of New York, Korea

Let $a < b$ be positive even integers. An even $[a, b]$-factor of a graph G is a spanning subgraph H such that for every vertex $v \in V(G)$, $d_H(v)$ is even and $a \leq d_H(v) \leq b$. Let $\kappa(G)$ be the minimum size of a vertex set S such that $G - S$ is disconnected or one vertex, and let $\sigma_2(G) = \min_{uv \in E(G)}(d(u) + d(v))$. In this talk, we prove that for even positive integers a and b with $4 \leq a < b$, if G is an n-vertex graph such that $n \geq (a + b)(\frac{a+3}{3})$, $\kappa(G) \geq a$, and $\sigma_2(G) \geq \frac{2an}{a+b}$, then G contains an even $[a, b]$-factor.

Keywords: Even $[a, b]$-factor, Ore-type condition, connectivity