On Weighted Eccentric Connectivity Index of a Graph

Fadekemi Janet Osaye, Auburn University

Let G be a connected edge-weighted graph of order n and size m. Let $w : E(G) \to N$ be the weighting function. We assume that w is normalized. That is: $\sum_{e \in E(G)} w(e) = m$. The distance d_w between any two vertices in G is the least weight between the two vertices and the eccentricity $e(v)$ of a vertex v in G is the distance from v to a vertex farthest from it in G. The edge-weighted eccentric connectivity index is defined as $\xi_w(G) = \sum_{v \in V(G)} \deg(v) e(v)$. We present an exact lower bound for ξ_w in terms of n and show that this bound is sharp. A sharp upper bound in terms of m is also derived. In addition, we present bounds relating $\xi_w(G)$ and $\xi_w(\bar{G})$.

Keywords: order, normalized weight, size, edge-weighted eccentric connectivity index, eccentricity, diameter.