Generating graphs with a specific minor

João Paulo Costalonga, Universidade Federal Do Espírito, Brazil
Sandra Kingan*, Brooklyn College, CUNY

Suppose that G is a simple 3-connected graph with a simple 3-connected minor H. The Splitter Theorem (Seymour 1980) states that, if G is not a wheel and H is not a 3-wheel, then up to isomorphism G can be obtained from H by a sequence of operations that consist of adding an edge between non-adjacent vertices or splitting a vertex. The Strong Splitter Theorem (KINGAN and LEMOS 2014) optimizes the Splitter Theorem to best possible by showing that at most two edges may be added before a vertex must be split, unless G and H have the same number of vertices. We say that G is H-critical if removal of any edge either destroys 3-connectivity or the H-minor. Such graphs are useful because they are just barely outside the class of graphs with no H-minor. We present results on H-critical graphs and a method for generating them.