Regular graph and some vertex-deleted subgraph

Kenji Kimura*, Ishinomaki Senshu University
Yoshimi Egawa, Tokyo University of Science

In this paper, we consider a relationship between a regular graph and an regular factor of its vertex-deleted subgraph. Katerinis [Regular factors in vertex-deleted subgraphs of regular graphs, *Discrete Math.* 131 (1994) 357–361] proved that if r is even integer and k is integer with $1 \leq k \leq \frac{r}{2}$, and G is an r-regular, r-edge-connected graph of odd order, then $G - x$ has a k-factor for each $x \in V(G)$. When the result “for each $x \in V(G)$” of Katerinis is replaced “for some $x \in V(G)$”, we consider what condition can be followed. One of our main results is that let r be an integer with $r \geq 4$, and let G be an r-regular, 2-edge-connected graph. If G is not bipartite, then there is some $x \in V(G)$ such that $G - x$ has a 2-factor. Another of our main results is that let r and k be an even integer such that $4 \leq k \leq \frac{r}{2}$, and ℓ be a minimum integer such that $\ell \geq \frac{r}{r-2k+4}$, and G be an r-regular, 2ℓ-edge-connected graph of odd order. Then, there is some $x \in V(G)$ such that $G - x$ has a k-factor. Moreover, if $r \geq 4k - 8$, then we can replace 2ℓ-edge-connected with 2-edge-connected.

Keywords: regular graph, regular factor, edge-connectivity, some vertex-deleted subgraph