The Hamilton-Waterloo Problem with C_6 and C_{3x} factors

Melissa Keranen, Zazil Santizo Huerta*, Michigan Technological University

A solution of The Hamilton-Waterloo Problem, that is, a resolvable (C_m, C_n)-decomposition of K_v into rC_m-factors and sC_n-factors is denoted by $(m, n) - \text{HWP}(v; r, s)$. This problem has been solved for $v \leq 17$ and for $v \leq 10$ when v is even. The most difficult case is either when r or s is equal to 1. In this talk, I will give the construction of $(6, 9) - \text{HWP}(18; 1, 7)$, and settle the problem for $v = 18t$ when t is odd. Furthermore, in order to extend the latter idea to the case $n = 3x$, we proved that there exists a $(6, 3x) - \text{HWP}(6xt; 1, 3xt - 2)$ for all odd $x \geq 3$, and that there exists a $(6, 3x) - \text{HWP}(3xt; 1, \frac{3xt-4}{2})$ for all even $x \geq 4$.

Keywords: 2-factorization, Hamilton Waterloo problem, Graph Decomposition, cycle decompositions