A&Z Sequences for Double Riordan Arrays

Donovan Branch, Geoffrey Thorpe, Morehouse College; Dennis Davenport*, Shakuan Franklin, Howard University; Jazmin T. Jones, Clark Atlanta University

A Riordan array is an infinite lower triangular matrix that is defined by two generating functions, g and f. The coefficients of the generating function g gives the first column and the n^{th} column of the matrix is defined by the generating function gf^n. We shall call f the multiplier function. Similarly, a Double Riordan array is an infinite lower triangular matrix that is defined by three generating functions, g, f_1 and f_2. Where the zeroth column of the Double Riordan array is g, the next column is given by gf_1 and the following column will be defined by gf_1f_2. The remaining columns are found by multiplying f_1 and f_2 alternatively. Thus, for a double Riordan array there are two multiplier functions, f_1 and f_2. It is known that the Riordan array only has one Z-sequence and one A-sequence. This is not the case for Double Riordan arrays. In this presentation we show that double Riordan arrays have two Z-sequences and one A-sequence.

Keywords: Riordan Array, A-sequence, Z-sequence