Generalizing p-goodness to ordered graph Ramsey numbers

Jeremy F. Alm*, Lamar University, Patrick Bahls, University of North Carolina Asheville, Carolyn Langhoff, Lamar University, Kayla Coffey, Stephen F. Austin State University

Let $R(G, H)$ denote the usual two-color Ramsey number. A graph G of order n is said to be p-good if $R(G, K_p) = (n - 1)(p - 1) + 1$. In other words, G is p-good iff the lower bound for $R(G, K_p)$ implied by the appropriate Turán graph is actually tight. It is known that the only connected graphs that are p-good for all p are trees.

In this talk we consider ordered Ramsey numbers $r_{<}(T^<, K_p)$ of ordered trees vs complete graphs. Call an ordered tree $T^<$ on n vertices order-p-good if $r_{<}(T^<, K_p) = (n - 1)(p - 1) + 1$. Every monotone path is order-p-good for all p, but not every ordered tree is order-p-good for all p. We attempt to characterize the class of ordered trees that are order-p-good for all p, and consider some reasonable-sounding guesses that turn out to be incorrect.

Keywords: ordered graph Ramsey numbers, p-goodness