On z-cycle factorizations with two associate classes

Michael Tiemeyer, Georgia Southern University

Let $K = K(a, p; \lambda_1, \lambda_2)$ be the multigraph with: the number of vertices in each part equal to a; the number of parts equal to p; the number of edges joining any two vertices of the same part equal to λ_1; and the number of edges joining any two vertices of different parts equal to λ_2. The existence of C_4-factorizations of K has been settled when a is even; when $a \equiv 1 \pmod{4}$ with one exception; for very few cases when $a \equiv 3 \pmod{4}$; and when $a \equiv 1 \pmod{z}$ and λ_1 is even, and when $a \equiv 0 \pmod{z}$. In this paper, we discuss latest results and further problems.

Keywords: multigraph, cycles, factorization