Min Orderings and the Complements of Threshold Tolerance Graphs

Pavol Hell, Simon Fraser University; Jing Huang, University of Victoria; Ross M. McConnell*, Colorado State University; Arash Rafiey, Indiana State University

An interval graph is the graph of intersections of a set of intervals on a line. Interval graphs have a rich and well-known set of structural properties. The complements of threshold tolerance graphs, known as co-TT graphs, are a generalization of interval graphs, and they can each be modeled with a set of intervals by modifying their interpretation. Let Γ denote the matrix whose rows are $(1, 1)$ and $(1, 0)$, and let S denote the matrix whose rows are $(0, 1)$ and $(1, 0)$. A min ordering of a digraph is an ordering of vertices such that the adjacency matrix, possibly with some ones on the diagonal, does not have Γ or S as a submatrix. We show that the co-TT graphs are those undirected graphs that have a min ordering and explore their relationship to the more general class of min-orderable digraphs.

Keywords: co-TT graphs, interval graphs, min orderings