On the Integer-antimagic Spectra of Hamiltonian Graphs

Richard M. Low*, San Jose State University
Ugur Odabasi, Istanbul University
Daniel Roberts, Illinois Wesleyan University
Jinze Zheng, Illinois Wesleyan University

Let A be a nontrival abelian group. A connected simple graph $G = (V, E)$ is A-antimagic if there exists an edge labeling $f : E(G) \to A \setminus \{0\}$ such that the induced vertex labeling $f^+ : V(G) \to A$, defined by $f^+(v) = \sum_{uv \in E(G)} f(uv)$, is injective. The integer-antimagic spectrum of a graph G is the set $\text{IAM}(G) = \{k \mid G$ is \mathbb{Z}_k-antimagic and $k \geq 2\}$. In this talk, we analyze the integer-antimagic spectra of Hamiltonian graphs.

Keywords: group-antimagic graph, integer-antimagic spectrum, Hamiltonian graph