Roots of Formal Power Series and New Theorems on Riordan Groups, Marshall M. Cohen, Morgan State University

Elements of the Riordan group \mathcal{R} over a field \mathbb{F} of characteristic zero are infinite lower triangular matrices which are defined in terms of pairs of formal power series. We introduce as a tool in the theory of Riordan groups the use of the roots $g(x)^{\frac{1}{n}}$ of elements g(x) in the ring of formal power series over \mathbb{F} . We survey new theorems we have proved using roots. In particular we generalize C. Marshall [Congress. Num., 229 (2017), 343-351] and prove: Given arbitrary g(x) with non-zero constant term, there exists a unique (explicit!) $F(x) = -x + f_2 x^2 + \cdots$ such that (g(x), F(x)) is an involution. in \mathcal{R} .

Keywords: formal power series, Riordan group, roots of series, involution